转:Spark 实战, 第 2 部分:使用 Kafka 和 Spark Streaming 构建实时数据处理系统

转自:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice2/

生产者:

package sparkStreaming

import scala.util.Random
import java.util.HashMap
import org.apache.kafka.clients.producer._
import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._

object UserBehaviorProducerClient {
   private val PAGE_NUM = 100
   private val MAX_MSG_NUM = 3
   private val MAX_CLICK_TIME = 5
   private val MAX_STAY_TIME = 10
   private val LIKE_OR_NOT = Array[Int](1, 0, -1)
   
   def main(args: Array[String]) {
       val Array(brokers, topic, wordsPerMessage) = Array("localhost:9092", "sun_test_topic", "3")
       val props = new HashMap[String, Object]()
       props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
       props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
                  "org.apache.kafka.common.serialization.StringSerializer")
       props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
              "org.apache.kafka.common.serialization.StringSerializer")
 
      val producer = new KafkaProducer[String, String](props)
 
      val rand = new Random()
       while (true) {
           //how many user behavior messages will be produced
           val msgNum = rand.nextInt(MAX_MSG_NUM) + 1
           try {
               //generate the message with format like page1|2|7.123|1
               for (i <- 0 to msgNum) {
                    var msg = new StringBuilder()
                    msg.append("page" + (rand.nextInt(PAGE_NUM) + 1))
                    msg.append("|")
                    msg.append(rand.nextInt(MAX_CLICK_TIME) + 1)
                    msg.append("|")
                    msg.append(rand.nextInt(MAX_CLICK_TIME) + rand.nextFloat())
                    msg.append("|")
                    msg.append(LIKE_OR_NOT(rand.nextInt(3)))
                    println(msg.toString())
                    val message = new ProducerRecord[String, String](topic, null, msg.toString())
                    producer.send(message)
                }
                println("%d user behavior messages produced.".format(msgNum+1))
            } catch {
                case e: Exception => println(e)
            }
            try {
                 //sleep for 5 seconds after send a micro batch of message
                Thread.sleep(5000)
            } catch {
                case e: Exception => println(e)
            }
       }
   }
}

 

消费者:

package sparkStreaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.HashPartitioner
import org.apache.spark.streaming.Duration

object WebPagePopularityValueCalculator {

  def main(args: Array[String]) {

    val Array(zkQuorum, group, topics) = Array("localhost:2181", "1", "sun_test_topic")
    val sparkConf = new SparkConf().setAppName("KafkaWordCount").setMaster("local[2]")
    val ssc = new StreamingContext(sparkConf, Seconds(2))
    ssc.checkpoint("checkpoint")

    val topicpMap = topics.split(",").map((_, 2)).toMap
    
    val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicpMap).map(_._2)
    val popularityData = lines.map { msgLine =>
      {
        val dataArr: Array[String] = msgLine.split("\\|")
        val pageID = dataArr(0)
        val popValue: Double = dataArr(1).toFloat * 0.8 + dataArr(2).toFloat * 0.8 + dataArr(3).toFloat * 1
        (pageID, popValue)
      }
    }
    //sum the previous popularity value and current value
    val updatePopularityValue = (iterator: Iterator[(String, Seq[Double], Option[Double])]) => {
      iterator.flatMap(t => {
        val newValue: Double = t._2.sum
        val stateValue: Double = t._3.getOrElse(0);
        Some(newValue + stateValue)
      }.map(sumedValue => (t._1, sumedValue)))
    }
    val initialRDD = ssc.sparkContext.parallelize(List(("page1", 0.00)))
    val stateDstream = popularityData.updateStateByKey[Double](updatePopularityValue,
      new HashPartitioner(ssc.sparkContext.defaultParallelism), true, initialRDD)
    //set the checkpoint interval to avoid too frequently data checkpoint which may
    //may significantly reduce operation throughput
    stateDstream.checkpoint(Duration(8 * 2 * 1000))
    //after calculation, we need to sort the result and only show the top 10 hot pages
    stateDstream.foreachRDD { rdd =>
      {
        val sortedData = rdd.map { case (k, v) => (v, k) }.sortByKey(false)
        val topKData = sortedData.take(10).map { case (v, k) => (k, v) }
        topKData.foreach(x => {
          println(x)
        })
      }
    }
    ssc.start()
    ssc.awaitTermination()
  }
}

 

posted on 2017-03-13 15:00  sunyaxue  阅读(266)  评论(0编辑  收藏  举报

导航