Distinct Subsequences

Distinct Subsequences

问题:

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit", T = "rabbit"

Return 3.

思路:

  动态规划

我的代码:

public class Solution {
    public int numDistinct(String S, String T) {
        if(S == null || S.length() == 0 || T == null || T.length() == 0)    return 0;
        int cols = S.length();
        int rows = T.length();
        if(rows > cols) return 0;
        int[][] dp = new int[rows+1][cols+1];
        for(int j = 0; j <= cols; j++)
        {
            dp[0][j] = 1;
        }
        for(int i = 1; i <= rows; i++)
        {
            for(int j = 1; j <= cols; j++)
            {
                dp[i][j] = dp[i][j-1];
                if(S.charAt(j-1) == T.charAt(i-1))
                {
                    dp[i][j] += dp[i-1][j-1];
                }
            }
        }
        return dp[rows][cols];
    }
}
View Code

学习之处:

  • 之前不知道动态规划方程怎么写,今天晚上强化了这方面,认真的思考了,想了想方法,现在总算有点眉目了,两道hard的题,都自己想出来,然后ac
  • 在这里再次强调一下如何写动态规划方程,多做题,自然就有感觉了,另外动态规划考察的是逆向思维,从dfs逆向思维到动态规划方程中。
  • 两种模式 二元动态规划方程f(m,n) = f(m,n-1)+f(m-1,n-1) 一元动规方程 f(n)= f(n-1)+f(n-2)+...+f(1) 

posted on 2015-03-28 21:18  zhouzhou0615  阅读(139)  评论(0编辑  收藏  举报

导航