/**
*
* Source : https://oj.leetcode.com/problems/binary-tree-maximum-path-sum/
*
*
* Given a binary tree, find the maximum path sum.
*
* The path may start and end at any node in the tree.
*
* For example:
* Given the below binary tree,
*
* 1
* / \
* 2 3
*
* Return 6.
*/
public class BinaryTreeMaximumPathSum {
/**
* 求出遍历树节点的时候最大和,
* 可以从任何地方开始遍历,可以在任何地方结束
*
* 分析得出有两种遍历方式:
* 1. 从根节点到叶子节点之间的一段,root-leaf path中的一段
* 2. 两个节点之间经过最小公共祖先节点的path
*
* 分别对于两种情况求出最大值,然后比较求出较大的一个
*
* 定义:
* sum1为第一种情况下,一个节点可能出现的最大值
* sum1(root) = max(max(sum1(root.left), 0), max(sum1(root.right), 0)) + root.value
*
* sum2为第二种情况下,一个节点可能出现的最大值
* sum2(root) = max(sum1(root.left), 0) + max(sum1(root.right), 0) + root.value
*
*
* @param root
* @return
*/
public int maxPathSum (TreeNode root) {
MaxSumHolder holder = new MaxSumHolder();
holder.value = Integer.MIN_VALUE;
return recursion(root, holder);
}
public int recursion (TreeNode root, MaxSumHolder holder) {
if (root == null) {
return 0;
}
int sum1Left = 0;
int sum1Right = 0;
if (root.leftChild != null) {
sum1Left = Math.max(recursion(root.leftChild, holder), 0);
}
if (root.rightChild != null) {
sum1Right = Math.max(recursion(root.rightChild, holder), 0);
}
int sum1 = Math.max(sum1Left, sum1Right) + root.value;
int sum2 = sum1Left + sum1Right + root.value;
holder.value = Math.max(holder.value, Math.max(sum1, sum2));
return holder.value;
}
private class MaxSumHolder {
int value;
}
public TreeNode createTree (char[] treeArr) {
TreeNode[] tree = new TreeNode[treeArr.length];
for (int i = 0; i < treeArr.length; i++) {
if (treeArr[i] == '#') {
tree[i] = null;
continue;
}
tree[i] = new TreeNode(treeArr[i]-'0');
}
int pos = 0;
for (int i = 0; i < treeArr.length && pos < treeArr.length-1; i++) {
if (tree[i] != null) {
tree[i].leftChild = tree[++pos];
if (pos < treeArr.length-1) {
tree[i].rightChild = tree[++pos];
}
}
}
return tree[0];
}
private class TreeNode {
TreeNode leftChild;
TreeNode rightChild;
int value;
public TreeNode(int value) {
this.value = value;
}
public TreeNode() {
}
}
public static void main(String[] args) {
BinaryTreeMaximumPathSum maximumPathSum = new BinaryTreeMaximumPathSum();
char[] arr = new char[]{'1','2','3'};
System.out.println( maximumPathSum.maxPathSum(maximumPathSum.createTree(arr)) + "----6");
}
}