/**
* Source : https://oj.leetcode.com/problems/edit-distance/
*
*
* Given two words word1 and word2, find the minimum number of steps required to
* convert word1 to word2. (each operation is counted as 1 step.)
*
* You have the following 3 operations permitted on a word:
*
* a) Insert a character
* b) Delete a character
* c) Replace a character
*/
public class EditDistance {
/**
* 计算出从一个单词变到另一个单词的最少步数,也就是最短距离,只能使用插入、删除、替换操作
*
* 考虑两个单词abc,bbcd,dp[i][j]表示word1的前i个字符变到word2的前j个字符,所需要的步数,""表示空串
* "" a b c
* "" 0 1 2 3
* b 1 1 1 2
* b 1 1 1 2
* c 3 3 2 1
* d 4 4 3 2
*
* 从上面的演算可以看出
* 当word1[i] == word2[j]的时候,dp[i][j] = dp[i-1][j-1]
* 当word1[i] != word2[j]的时候,dp[i][j] = 其左边、左上方、正上方三个数字中最小的那一个加1
*
*
* @param word1
* @param word2
* @return
*/
public int minimumDistance (String word1, String word2) {
if (word1.length() == 0) {
return word2.length();
}
if (word2.length() == 0) {
return word1.length();
}
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
for (int i = 0; i <= word1.length(); i++) {
dp[i][0] = i;
}
for (int i = 0; i <= word2.length(); i++) {
dp[0][i] = i;
}
for (int i = 1; i <= word1.length(); i++) {
for (int j = 1; j <= word2.length(); j++) {
if (word1.charAt(i-1) == word2.charAt(j-1)) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = Math.min(Math.min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
}
}
}
return dp[word1.length()][word2.length()];
}
public static void main(String[] args) {
EditDistance editDistance = new EditDistance();
System.out.println(editDistance.minimumDistance("", "abc"));
System.out.println(editDistance.minimumDistance("b", "abc"));
System.out.println(editDistance.minimumDistance("bb", "abc"));
System.out.println(editDistance.minimumDistance("bbc", "abc"));
System.out.println(editDistance.minimumDistance("bbcd", "abc"));
}
}