import java.util.ArrayList;
import java.util.List;
/**
* Source : https://oj.leetcode.com/problems/permutation-sequence/
*
*
* The set [1,2,3,…,n] contains a total of n! unique permutations.
*
* By listing and labeling all of the permutations in order,
* We get the following sequence (ie, for n = 3):
*
* "123"
* "132"
* "213"
* "231"
* "312"
* "321"
*
* Given n and k, return the kth permutation sequence.
*
* Note: Given n will be between 1 and 9 inclusive.
*/
public class PermutationSequence {
/**
* 寻找n个元素组成的第k个排列
*
* 第一方法:
* 从最小的开始,循环k次找到第k个排列
*
* 第二种方法:
* 找到第k个排列的规律
*
* 这种题目,可以先以一个简单的例子来找规律
* 这里假设n = 4, k = 9
* 1234
* 1243
* 1324
* 1342
* 1423
* 1432
* 2134
* 2143
* 2314 >>>> k = 9
* 2341
* 2413
* 2431
* 3124
* 3142
* 3214
* 3241
* 3412
* 3421
* 4123
* 4132
* 4213
* 4231
* 4312
* 4321
*
* 以下认为arr下标从1开始
* 第一位:
* arr[4] = {1,2,3,4},k = 9,n = 4
* 上面的排列是有规律的,每个位置每一个数字出现cycle = (n-1) = (4-1)! = 6次,整体第k个的时候,该位置已经经过 count = k / cycle = 1个周期,则该位置的数是arr[count + 1] = 2,因为已经过了count个周期,是第count+1个周期,就轮到了数组arr中的第count+1个数字
*
* 第二位:
* arr[3] = {1,3,4},k' = k % (n-1)! = 3,n' = 3
* 右面一个位置的数字,以2开头,因为2已经确定,剩下的形成一个新的数组arr[3] = {1,3,4},每个位置每个数字出现cycle = (n' - 1) = (3-1)! = 2次,整体第k个的时候,对于当前数组组成的排列而言处于第k' = k % (n-1) = 3个,第三个的第一位这个时候已经经过count = k' / cycle = 1个周期,正处于第index = count + 1 = 2个周期,也就是该位置的数为arr[index]
*
* 第三位:
* arr[2] = {1,4},k'' = k' % (n'-1)! = 1,n'' = 2
* cycle = (n'' - 1)! = 1, count = k'' / cycle = 1,index = count + 1 = 2, arr[index] = 4
*
* 第四位:
* arr[1] = {1}, k''' = k'' % (n'' - 1)! = 0, n''' = 1
* cycle = (n''' - 1)! = 1,index = k''' / cycle + 1 = 1,arr[index] = 1
*
* @param n
* @param k
* @return
*/
public String getPermutation (int n, int k) {
if (n < 1) {
return "";
}
int[] fatorial = new int[n];
List<Integer> arr = new ArrayList<Integer>();
fatorial[0] = 1;
arr.add(1);
for (int i = 1; i < n; i++) {
fatorial[i] = fatorial[i-1] * i;
arr.add(i+1);
}
int index = 0;
// 因为数组下标是从0开始的,k--就是为了让数组下标从0开始
k--;
StringBuilder result = new StringBuilder();
while (n > 0) {
index = k / fatorial[n-1];
result.append(arr.get(index));
arr.remove(index);
k = k % fatorial[n-1];
n--;
}
return result.toString();
}
public static void main(String[] args) {
PermutationSequence permutationSequence = new PermutationSequence();
System.out.println(permutationSequence.getPermutation(4, 9));
System.out.println(permutationSequence.getPermutation(4, 24));
}
}