/*页首的跳转连接,*/

数据采集第三次作业

作业①
指定一个网站,爬取这个网站中的所有的所有图片,例如中国气象网(http://www.weather.com.cn)。分别使用单线程和多线程的方式爬取。
代码如下:
单线程
`

  from bs4 import BeautifulSoup
  from bs4 import UnicodeDammit
  import urllib.request

  def imageSpider(start_url):
      try:
          urls=[]
          req=urllib.request.Request(start_url,headers=headers)
          data=urllib.request.urlopen(req)
          data=data.read()
          dammit=UnicodeDammit(data,["utf-8","gbk"])
          data=dammit.unicode_markup
          soup=BeautifulSoup(data,"html.parser")
          images=soup.select("img")
          for image in images:
              try:
                  src=image["src"]
                  url=urllib.request.urljoin(start_url,src)
                  if url not in urls:
                      urls.append(url)
                      print(url)
                      download(url)
              except Exception as err:
                  print(err)
      except Exception as err:
          print(err)

  def download(url):
      global count
      try:
          count=count+1
          if(url[len(url)-4]=='.'):
              ext=url[len(url)-4:]
          else:
              ext=""
          req=urllib.request.Request(url,headers=headers)
          data=urllib.request.urlopen(req,timeout=100)
          data=data.read()
          fobj=open("D:\pycharm\数据采集\\pictures\\"+str(count)+ext,"wb")
          fobj.write(data)
          fobj.close()
          print("downloaded"+str(count)+ext)
      except Exception as err:
          print(err)

  start_url="http://www.weather.com.cn/weather/101230101.shtml"
  headers={
      "User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36             (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36"
  }
  count=0
  imageSpider(start_url)

`

多线程:
`

  from bs4 import BeautifulSoup
  from bs4 import UnicodeDammit
  import urllib.request
  import threading

  def imageSpider(start_url):
      global threads
      global count
      try:
          urls=[]
          req=urllib.request.Request(start_url,headers=headers)
          data=urllib.request.urlopen(req)
          data=data.read()
          dammit=UnicodeDammit(data,["utf-8","gbk"])
          data=dammit.unicode_markup
          soup=BeautifulSoup(data,"html.parser")
          images=soup.select("img")
          for image in images:
              try:
                  src=image["src"]
                  url=urllib.request.urljoin(start_url,src)
                  if url not in urls:
                      print(url)
                      count=count+1
                      T=threading.Thread(target=download,args=(url,count))
                      T.setDaemon(False)
                      T.start()
                      threads.append(T)
              except Exception as err:
                  print(err)
      except Exception as err:
          print(err)

  def download(url,count):
      try:
          count=count+1
          if(url[len(url)-4]=='.'):
              ext=url[len(url)-4:]
          else:
              ext=""
          req=urllib.request.Request(url,headers=headers)
          data=urllib.request.urlopen(req,timeout=100)
          data=data.read()
          fobj=open("D:\pycharm\数据采集\\pictures2\\"+str(count)+ext,"wb")
          fobj.write(data)
          fobj.close()
          print("downloaded"+str(count)+ext)
      except Exception as err:
          print(err)

  start_url="http://www.weather.com.cn/weather/101230101.shtml"
  headers={
      "User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36"
  }
  count=0
  threads=[]
  imageSpider(start_url)
  for t in threads:
      t.join()
  print("The End")

`

心得体会:这次作业主要是对书本内容的复现,加深了对线程与多线程运行过程的认识。

作业②
用scrapy框架爬取网站图片,我选取了一个壁纸网站进行爬取

setting.py

`

  BOT_NAME = 'netbian'

  SPIDER_MODULES = ['netbian.spiders']
  NEWSPIDER_MODULE = 'netbian.spiders'

`
items.py

`

  import scrapy


  class NetbianItem(scrapy.Item):
      # define the fields for your item here like:
       imgname = scrapy.Field() # 图片名称
       imgurl = scrapy.Field() # 图片地址
       dirname = scrapy.Field() # 图片存放文件名

`
pipelines.py

`

  import scrapy
  from scrapy.pipelines.images import ImagesPipeline


  class NetbianPipeline(ImagesPipeline):
      # 注释掉原来的函数
      # def process_item(self, item, spider):
      #     return item

      # 重写两个方法
      # 爬取图片
      def get_media_requests(self, item, info):
          for i in range(len(item['imgurl'])):
              # 爬取的图片地址并不是完整的,需要加上协议和域名
              imgurl = "http://pic.netbian.com" + item['imgurl'][i]

              # meta 传参给self.file_path()
              yield scrapy.Request(imgurl, meta={'imgname': item['imgname'][i], 'dirname': item['dirname']})

      # 给图片定义存放位置和图片名
      def file_path(self, request, response=None, info=None):
          imgname = request.meta['imgname'].strip() + '.jpg'
          dirname = request.meta['dirname']

          filename = u"{}/{}".format(dirname, imgname)

          return filename

`


心得体会:
这次实验过程中遇到了from ..items import NetbianItem运行时报错,调用范围出错,看网上的参考教程这样写,没有多加思考就用了,后来改成在本文件夹下调用就正常了,以后还是要仔细一些。
实验③
使用scrapy框架爬取股票相关信息。

settings.py
`

  BOT_NAME = 'Dfstocks'

  SPIDER_MODULES = ['Dfstocks.spiders']
  NEWSPIDER_MODULE = 'Dfstocks.spiders'
  ROBOTSTXT_OBEY = False

  ITEM_PIPELINES = {
'Dfstocks.pipelines.DfstocksPipeline': 300,
  }

`
items.py

`

  import scrapy


  class DfstocksItem(scrapy.Item):
      # define the fields for your item here like:
      # name = scrapy.Field()
      number = scrapy.Field()
      f12 = scrapy.Field()
      f14 = scrapy.Field()
      f2 = scrapy.Field()
      f3 = scrapy.Field()
      f4 = scrapy.Field()
      f5 = scrapy.Field()
      f6 = scrapy.Field()
      f7 = scrapy.Field()

`

stocks.py

`

  import scrapy

  import re
  from Dfstocks.items import DfstocksItem

  class StocksSpider(scrapy.Spider):
      name = 'stocks'
      #allowed_domains = ['www.eastmoney.com']
      start_urls = ['http://99.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112408165941736007347_1603177898272&pn=2&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&fid=f3&fs=m:0+t:6,m:0+t:13,m:0+t:80,m:1+t:2,m:1+t:23&fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152&_=1603177898382']

      def parse(self, response):
          req = response.text
          pat = '"diff":\[\{(.*?)\}\]'
          data = re.compile(pat, re.S).findall(req)
          datas = data[0].split('},{')  #对字符进行分片
          print("序号\t\t股票代码\t\t股票名称\t\t最新报价\t\t涨跌幅\t\t涨跌额\t\t成交量\t\t成交额\t\t振幅\t\t")
          for i in range(len(datas)):
              item = DfstocksItem()
              s = r'"(\w)+":'
              line = re.sub(s, " ", datas[i]).split(",")
              item["number"] = str(i + 1)
              item["f12"] = line[11]
              item["f14"] = line[13]
              item["f2"] = line[1]
              item["f3"] = line[2]
              item["f4"] = line[3]
              item["f5"] = line[4]
              item["f6"] = line[5]
              item["f7"] = line[6]

              print(item["number"] + "\t", item['f12'] + "\t", item['f14'] + "\t", item['f2'] + "\t", item['f3'] + "%\t",item['f4'] + "\t", item['f5'] + "\t", str(item['f6']) + "\t", item['f7'])
              yield item

`

心得体会:
这次实验我是在第二次实验上加以改动的,因为时间太紧张了,在scrapy框架下进行爬取简便了很多,很不错。

posted @ 2020-10-20 16:39  Embroider  阅读(148)  评论(0编辑  收藏  举报
/* 看板娘 */