ClickHouse

 

ClickHouse 是俄罗斯的Yandex于2016年开源的列式存储数据库(DBMS),主要用于在线分析处理查询(OLAP),能够使用SQL查询实时生成分析数据报告

https://clickhouse.yandex/docs/zh/


1 安装前的准备
1.1 CentOS取消打开文件数限制

在/etc/security/limits.conf、/etc/security/limits.d/90-nproc.conf这2个文件的末尾加入一下内容:

复制代码
[root@hadoop101 ~]# vim /etc/security/limits.conf
在文件末尾添加:
* soft nofile 65536 
* hard nofile 65536 
* soft nproc 131072 
* hard nproc 131072

[root@hadoop101 ~]# vim /etc/security/limits.d/90-nproc.conf
在文件末尾添加:
* soft nofile 65536 
* hard nofile 65536 
* soft nproc 131072 
* hard nproc 131072
重启服务器之后生效,用ulimit -n 或者ulimit -a查看设置结果
[root@hadoop101 ~]# ulimit -n
65536
复制代码

1.2 CentOS取消SELINUX
修改/etc/selinux/config中的SELINUX=disabled后重启

[root@hadoop101 ~]# vim /etc/selinux/config
SELINUX=disabled

1.3 关闭防火墙 

[root@hadoop101 ~]# service iptables stop 
[root@hadoop101 ~]# service ip6tables stop
ip6tables:将 chains 设置为 ACCEPT 策略:filter            [确定]
ip6tables:清除防火墙规则:                                [确定]
:正在卸载模块:                                           [确定]

1.4 安装依赖

[root@hadoop101 ~]# yum install -y libtool
[root@hadoop101 ~]# yum install -y *unixODBC*

 

安装--3台机器都要进行安装;

复制代码
[root@hadoop101 module]# rpm -ivh *.rpm 
Preparing...                ########################################### [100%]
   1:clickhouse-server-commo########################################### [ 20%]
   2:clickhouse-server      ########################################### [ 40%]
   3:clickhouse-client      ########################################### [ 60%]
   4:clickhouse-debuginfo   ########################################### [ 80%]
   5:clickhouse-compressor  ########################################### [100%]
复制代码

启动ClickServer

前台启动:
[root@hadoop101 module]# clickhouse-server --config-file=/etc/clickhouse-server/config.xml 
后台启动:
[root@hadoop101 module]# nohup clickhouse-server --config-file=/etc/clickhouse-server/config.xml  >null 2>&1 &

[1] 2696

使用client连接server

复制代码
[root@hadoop101 ~]# clickhouse-client 
ClickHouse client version 1.1.54236.
Connecting to localhost:9000.
Connected to ClickHouse server version 1.1.54236.

:) show databases;

SHOW DATABASES

┌─name────┐
│ default │
│ system  │
└─────────┘

2 rows in set. Elapsed: 0.003 sec. 
复制代码

分布式集群安装

三台机器修改配置文件config.xml

注意:上面标红的地方需要根据机器不同去修改

复制代码
[root@hadoop101 ~]# vim /etc/clickhouse-server/config.xml

<listen_host>::</listen_host>
<!-- <listen_host>::1</listen_host> -->
<!-- <listen_host>127.0.0.1</listen_host> -->
分发
[root@hadoop101 ~]# xsync /etc/clickhouse-server/config.xml 
复制代码

在三台机器的etc目录下新建metrika.xml文件

注意 NameNode 的 9000 端口号的配置!NameNode可不配置成9000,可配置为8020等。

hdfs getconf -confKey fs.default.name
INFO Configuration.deprecation: fs.default.name is deprecated. Instead, use fs.defaultFS
hdfs://hadoop101:9000

 

复制代码
[root@hadoop101 ~]# vim /etc/metrika.xml  
<yandex>
<clickhouse_remote_servers>
    <perftest_3shards_1replicas>
        <shard>
             <internal_replication>true</internal_replication>
            <replica>
                <host>hadoop101</host>
                <port>9000</port>
            </replica>
        </shard>
        <shard>
            <replica>
                <internal_replication>true</internal_replication>
                <host>hadoop102</host>
                <port>9000</port>
            </replica>
        </shard>
        <shard>
            <internal_replication>true</internal_replication>
            <replica>
                <host>hadoop103</host>
                <port>9000</port>
            </replica>
        </shard>
    </perftest_3shards_1replicas>
</clickhouse_remote_servers>


<zookeeper-servers>
  <node index="1">
    <host>hadoop101</host>
    <port>2181</port>
  </node>

  <node index="2">
    <host>hadoop102</host>
    <port>2181</port>
  </node>
  <node index="3">
    <host>hadoop103</host>
    <port>2181</port>
  </node>
</zookeeper-servers>

<macros>
    <replica>hadoop101</replica>
</macros>


<networks>
   <ip>::/0</ip>
</networks>


<clickhouse_compression>
<case>
  <min_part_size>10000000000</min_part_size>
                                             
  <min_part_size_ratio>0.01</min_part_size_ratio>                                                                                                                                       
  <method>lz4</method>
</case>
</clickhouse_compression>

</yandex>
复制代码

三台机器启动ClickServer

首先在三台机器开启Zookeeper

前台启动:
[root@hadoop101 ~]# clickhouse-server --config-file=/etc/clickhouse-server/config.xml 
后台启动:
[root@hadoop101 ~]# nohup clickhouse-server --config-file=/etc/clickhouse-server/config.xml  >null 2>&1 &

[1] 2696

 关闭服务

复制代码
[kris@hadoop101 logs]$ sudo service clickhouse-server stop  //停不掉使用下面命令
Stop clickhouse-server service:

ps -aux | grep clickhouse-server
Warning: bad syntax, perhaps a bogus '-'? See /usr/share/doc/procps-3.2.8/FAQ
494 6876 0.2 1.0 349624 40868 ? Ssl 13:40 0:32 clickhouse-server --daemon --pid-file=/var/run/clickhouse-server/clickhouse-server.pid --config-file=/etc/clickhouse-server/config.xml
kris 14440 0.0 0.0 103332 868 pts/0 R+ 17:16 0:00 grep clickhouse-server

sudo kill -9 6876
复制代码

 

 

数据类型

整型

固定长度的整型,包括有符号整型或无符号整型。

整型范围(-2n-1~2n-1-1):

  • Int8 - [-128 : 127]
  • Int16 - [-32768 : 32767]
  • Int32 - [-2147483648 : 2147483647]
  • Int64 - [-9223372036854775808 : 9223372036854775807]

无符号整型范围(0~2n-1):

  • UInt8 - [0 : 255]
  • UInt16 - [0 : 65535]
  • UInt32 - [0 : 4294967295]
  • UInt64 - [0 : 18446744073709551615]

浮点型

  • Float32 - float
  • Float64 – double

建议尽可能以整数形式存储数据。例如,将固定精度的数字转换为整数值,如时间用毫秒为单位表示,因为浮点型进行计算时可能引起四舍五入的误差。

:) select 1-0.9
SELECT 1 - 0.9
┌───────minus(1, 0.9)─┐
│ 0.09999999999999998 │
└─────────────────────┘
1 rows in set. Elapsed: 0.005 sec. 

与标准SQL相比,ClickHouse 支持以下类别的浮点数:

Inf-正无穷:

:) select 1/0
SELECT 1 / 0
┌─divide(1, 0)─┐
│          inf │
└──────────────┘
1 rows in set. Elapsed: 0.004 sec. 

-Inf-负无穷:

:) select -1/0
SELECT -1 / 0
┌─divide(-1, 0)─┐
│          -inf │
└───────────────┘
1 rows in set. Elapsed: 0.003 sec. 

NaN-非数字:

复制代码
:) select 0/0

SELECT 0 / 0

┌─divide(0, 0)─┐
│          nan │
└──────────────┘
复制代码

 

 布尔型

没有单独的类型来存储布尔值。可以使用 UInt8 类型,取值限制为 0 或 1。

字符串

  1)String

    字符串可以任意长度的。它可以包含任意的字节集,包含空字节。

  2)FixedString(N)

    固定长度 N 的字符串,N 必须是严格的正自然数。当服务端读取长度小于 N 的字符串时候,通过在字符串末尾添加空字节来达到 N 字节长度。 当服务端读取长度大于 N 的字符串时候,将返回错误消息。

与String相比,极少会使用FixedString,因为使用起来不是很方便。

 枚举类型

  包括 Enum8 和 Enum16 类型。Enum 保存 'string'= integer 的对应关系。

  Enum8 用 'String'= Int8 对描述。

  Enum16 用 'String'= Int16 对描述。

用法演示:

创建一个带有一个枚举 Enum8('hello' = 1, 'world' = 2) 类型的列:

复制代码
:) create table t_enum(x Enum8('Hello' = 1, 'World'=2)) engine = TinyLog      
CREATE TABLE t_enum
(
    x Enum8('Hello' = 1, 'World' = 2)
) ENGINE = TinyLog
Ok.
0 rows in set. Elapsed: 0.016 sec. 

:) insert into t_enum values ('Hello'), ('World'), ('Hello')
INSERT INTO t_enum VALUES
Ok.
3 rows in set. Elapsed: 0.003 sec. 
这个 x 列只能存储类型定义中列出的值:'hello''world'。如果尝试保存任何其他值,ClickHouse 抛出异常。 :) insert into t_enum values (
'aa') INSERT INTO t_enum VALUES Exception on client: Code: 49. DB::Exception: Unknown element 'aa' for type Enum8('Hello' = 1, 'World' = 2)
复制代码

从表中查询数据时,ClickHouse 从 Enum 中输出字符串值。

如果需要看到对应行的数值,则必须将 Enum 值转换为整数类型。

复制代码
:) select * from t_enum
SELECT *
FROM t_enum 
┌─────x─┐
│ Hello │
│ World │
│ Hello │
└───────┘
3 rows in set. Elapsed: 0.003 sec. 

:) select cast(x, 'Int8') from t_enum  
SELECT CAST(x AS Int8)
FROM t_enum 
┌─CAST(x, \'Int8\')─┐1 │
│                 2 │
│                 1 │
└───────────────────┘
复制代码

 

数组

Array(T)由 T 类型元素组成的数组。

T 可以是任意类型,包含数组类型。 但不推荐使用多维数组,ClickHouse 对多维数组的支持有限。例如,不能在 MergeTree 表中存储多维数组。

可以使用array函数来创建数组:array(T);  也可以使用方括号:[]

创建数组案例:

  

复制代码
:) select array(1,2) as x, toTypeName(x)
SELECT 
    [1, 2] AS x, 
    toTypeName(x)
┌─x─────┬─toTypeName(array(1, 2))─┐
│ [1,2] │ Array(UInt8)            │
└───────┴─────────────────────────┘

:) SELECT [1, 2] AS x, toTypeName(x)
SELECT 
    [1, 2] AS x, 
    toTypeName(x)
┌─x─────┬─toTypeName([1, 2])─┐
│ [1,2] │ Array(UInt8)       │
└───────┴────────────────────┘
复制代码

 

元组

Tuple(T1, T2, ...)元组,其中每个元素都有单独的类型。

创建元组的示例:

复制代码
:) select  tuple(1,'a') as x, toTypeName(x)
SELECT 
    (1, 'a') AS x, 
    toTypeName(x)
┌─x───────┬─toTypeName(tuple(1, \'a\'))─┐
│ (1,'a') │ Tuple(UInt8, String)        │
└─────────┴─────────────────────────────┘

1 rows in set. Elapsed: 0.004 sec.
复制代码

 Date

日期类型,用两个字节存储,表示从 1970-01-01 (无符号) 到当前的日期值。

还有很多数据结构,可以参考官方文档:https://clickhouse.yandex/docs/zh/data_types/

 表引擎

表引擎(即表的类型)决定了:

  1)数据的存储方式和位置,写到哪里以及从哪里读取数据

  2)支持哪些查询以及如何支持。

  3)并发数据访问。

  4)索引的使用(如果存在)。

  5)是否可以执行多线程请求。

  6)数据复制参数。

ClickHouse的表引擎有很多,下面介绍其中几种,对其他引擎有兴趣的可以去查阅官方文档:https://clickhouse.yandex/docs/zh/operations/table_engines/

  ① TinyLog

最简单的表引擎,用于将数据存储在磁盘上。每列都存储在单独的压缩文件中,写入时,数据将附加到文件末尾。

该引擎没有并发控制

- 如果同时从表中读取和写入数据,则读取操作将抛出异常;

- 如果同时写入多个查询中的表,则数据将被破坏。

这种表引擎的典型用法是 write-once:首先只写入一次数据,然后根据需要多次读取。此引擎适用于相对较小的表(建议最多1,000,000行)。如果有许多小表,则使用此表引擎是适合的,因为它比需要打开的文件更少。当拥有大量小表时,可能会导致性能低下。      不支持索引。

案例:创建一个TinyLog引擎的表并插入一条数据

:) create table t(a UInt16, b String) engine=TinyLog
##插入数据
:) insert into t (a, b) values (1, 'abc');

此时我们到保存数据的目录/var/lib/clickhouse/data/default/t中可以看到如下目录结构:

复制代码
[root@hadoop101 ~]# cd /var/lib/clickhouse/data/default/t
[root@hadoop101 t]# ll
总用量 12
-rw-r--r-- 1 root root 28 5月  20 17:00 a.bin
-rw-r--r-- 1 root root 30 5月  20 17:00 b.bin
-rw-r--r-- 1 root root 60 5月  20 17:00 sizes.json
[root@hadoop101 t]# cat sizes.json 
{"yandex":{"a%2Ebin":{"size":"28"},"b%2Ebin":{"size":"30"}}}[root@hadoop101 t]# 
复制代码

a.bin 和 b.bin 是压缩过的对应的列的数据,sizes.json 中记录了每个 *.bin 文件的大小:

- *.bin是按列保存数据的文件;   - *.mrk保存块偏移量;  - primary.idx保存主键索引

 ② Memory

内存引擎,数据以未压缩的原始形式直接保存在内存当中,服务器重启数据就会消失。读写操作不会相互阻塞,不支持索引。简单查询下有非常非常高的性能表现(超过10G/s)。

一般用到它的地方不多,除了用来测试,就是在需要非常高的性能,同时数据量又不太大(上限大概 1 亿行)的场景。

 ③Merge

Merge 引擎 (不要跟 MergeTree 引擎混淆) 本身不存储数据,但可用于同时从任意多个其他的表中读取数据。 读是自动并行的,不支持写入。读取时,那些被真正读取到数据的表的索引(如果有的话)会被使用。

Merge 引擎的参数:一个数据库名和一个用于匹配表名的正则表达式。

案例:先建t1,t2,t3三个表,然后用 Merge 引擎的 t 表再把它们链接起来。

复制代码
:)create table t1 (id UInt16, name String) ENGINE=TinyLog;
:)create table t2 (id UInt16, name String) ENGINE=TinyLog;
:)create table t3 (id UInt16, name String) ENGINE=TinyLog;

:)insert into t1(id, name) values (1, 'first');
:)insert into t2(id, name) values (2, 'second');
:)insert into t3(id, name) values (3, 'i am in t3');

:)create table t (id UInt16, name String) ENGINE=Merge(currentDatabase(), '^t');

:) select * from t;
┌─id─┬─name─┐
│  2 │ second │
└────┴──────┘
┌─id─┬─name──┐
│  1 │ first │
└────┴───────┘
┌─id─┬─name───────┐
│ 3     │ i am in t3 │
└────┴────────────┘
复制代码

 

④ MergeTree

Clickhouse 中最强大的表引擎当属 MergeTree (合并树)引擎及该系列(*MergeTree)中的其他引擎。

MergeTree 引擎系列的基本理念如下。当你有巨量数据要插入到表中,你要高效地一批批写入数据片段,并希望这些数据片段在后台按照一定规则合并。相比在插入时不断修改(重写)数据进存储,这种策略会高效很多。

格式:

ENGINE [=] MergeTree(date-column [, sampling_expression], (primary, key), index_granularity)

参数解读:

date-column — 类型为 Date 的列名。ClickHouse 会自动依据这个列按月创建分区。分区名格式为 "YYYYMM" 。

sampling_expression — 采样表达式。

(primary, key) — 主键。类型为Tuple()

index_granularity — 索引粒度。即索引中相邻”标记”间的数据行数。设为 8192 可以适用大部分场景。

案例:

create table mt_table (date  Date, id UInt8, name String) ENGINE=MergeTree(date, (id, name), 8192);

insert into mt_table values ('2019-05-01', 1, 'zhangsan');
insert into mt_table values ('2019-06-01', 2, 'lisi');
insert into mt_table values ('2019-05-03', 3, 'wangwu');

在/var/lib/clickhouse/data/default/mt_tree下可以看到:

[root@hadoop102 mt_table]# ls

  20190501_20190501_2_2_0  20190503_20190503_6_6_0  20190601_20190601_4_4_0  detached

随便进入一个目录:

[root@hadoop102 20190601_20190601_4_4_0]# ls

  checksums.txt  columns.txt  date.bin  date.mrk  id.bin  id.mrk  name.bin  name.mrk  primary.idx

- *.bin是按列保存数据的文件

- *.mrk保存块偏移量

- primary.idx保存主键索引

⑤ ReplacingMergeTree

这个引擎是在 MergeTree 的基础上,添加了“处理重复数据”的功能,该引擎和MergeTree的不同之处在于它会删除具有相同主键的重复项。数据的去重只会在合并的过程中出现。合并会在未知的时间在后台进行,所以你无法预先作出计划。有一些数据可能仍未被处理。因此,ReplacingMergeTree 适用于在后台清除重复的数据以节省空间,但是它不保证没有重复的数据出现。

格式:

  ENGINE [=] ReplacingMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, [ver])

可以看出他比MergeTree只多了一个ver,这个ver指代版本列,他和时间一起配置,区分哪条数据是最新的。

案例:

  create table rmt_table (date  Date, id UInt8, name String,point UInt8) ENGINE= ReplacingMergeTree(date, (id, name), 8192,point);

插入一些数据:

复制代码
insert into rmt_table values ('2019-07-10', 1, 'a', 20);

insert into rmt_table values ('2019-07-10', 1, 'a', 30);

insert into rmt_table values ('2019-07-11', 1, 'a', 20);

insert into rmt_table values ('2019-07-11', 1, 'a', 30);

insert into rmt_table values ('2019-07-11', 1, 'a', 10);
复制代码

等待一段时间或optimize table rmt_table手动触发merge,后查询

复制代码
:) select * from rmt_table;

┌───────date─┬─id─┬─name─┬─point─┐

│ 2019-07-111 │ a    │    30 │

└────────────┴────┴──────┴───────┘
复制代码

6 SummingMergeTree

该引擎继承自 MergeTree。区别在于,当合并 SummingMergeTree 表的数据片段时,ClickHouse 会把所有具有相同主键的行合并为一行,该行包含了被合并的行中具有数值数据类型的列的汇总值。如果主键的组合方式使得单个键值对应于大量的行,则可以显著的减少存储空间并加快数据查询的速度,对于不可加的列,会取一个最先出现的值。

语法:

ENGINE [=] SummingMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, [columns])

columns — 包含将要被汇总的列的列名的元组

案例:

create table smt_table (date Date, name String, a UInt16, b UInt16) ENGINE=SummingMergeTree(date, (date, name), 8192, (a))

插入数据:

复制代码
insert into smt_table (date, name, a, b) values ('2019-07-10', 'a', 1, 2);

insert into smt_table (date, name, a, b) values ('2019-07-10', 'b', 2, 1);

insert into smt_table (date, name, a, b) values ('2019-07-11', 'b', 3, 8);

insert into smt_table (date, name, a, b) values ('2019-07-11', 'b', 3, 8);

insert into smt_table (date, name, a, b) values ('2019-07-11', 'a', 3, 1);

insert into smt_table (date, name, a, b) values ('2019-07-12', 'c', 1, 3);
复制代码

等待一段时间或optimize table smt_table手动触发merge,后查询

复制代码
:) select * from smt_table

┌───────date─┬─name─┬─a─┬─b─┐

│ 2019-07-10 │ a    │ 12 │

│ 2019-07-10 │ b    │ 21 │

│ 2019-07-11 │ a    │ 31 │

│ 2019-07-11 │ b    │ 68 │

│ 2019-07-12 │ c    │ 13 │

└────────────┴──────┴───┴───┘
复制代码

 

发现2019-07-11,b的a列合并相加了,b列取了8(因为b列为8的数据最先插入)。

7 Distributed

分布式引擎,本身不存储数据, 但可以在多个服务器上进行分布式查询。 读是自动并行的。读取时,远程服务器表的索引(如果有的话)会被使用。

Distributed(cluster_name, database, table [, sharding_key])

参数解析:

cluster_name  - 服务器配置文件中的集群名,在/etc/metrika.xml中配置的

database – 数据库名

table – 表名

sharding_key – 数据分片键

案例演示:

1)在hadoop101,hadoop102,hadoop103上分别创建一个表t

  :)create table t(id UInt16, name String) ENGINE=TinyLog;

2)在三台机器的t表中插入一些数据

  :)insert into t(id, name) values (1, 'zhangsan');

  :)insert into t(id, name) values (2, 'lisi');

3)在hadoop101上创建分布式表

  :)create table dis_table(id UInt16, name String) ENGINE=Distributed(perftest_3shards_1replicas, default, t, id);

4)往dis_table中插入数据

  :) insert into dis_table select * from t

5)查看数据量

复制代码
:) select count() from dis_table

FROM dis_table

┌─count()─┐

│       8 │

└─────────┘

:) select count() from t

SELECT count()

FROM t

┌─count()─┐

│       3 │

└─────────┘
复制代码

 

可以看到每个节点大约有1/3的数据

 

SQL语法

1 CREATE

1 CREATE DATABASE

用于创建指定名称的数据库,语法如下:

CREATE DATABASE [IF NOT EXISTS] db_name

如果查询中存在IF NOT EXISTS,则当数据库已经存在时,该查询不会返回任何错误。

:) create database test;

Ok.

0 rows in set. Elapsed: 0.018 sec.

 

.2 CREATE TABLE

对于创建表,语法如下:

复制代码
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]

(

    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],

    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],

    ...

) ENGINE = engine
复制代码

 

DEFAULT expr – 默认值,用法与SQL类似。

MATERIALIZED expr – 物化表达式,被该表达式指定的列不能被INSERT,因为它总是被计算出来的。 对于INSERT而言,不需要考虑这些列。 另外,在SELECT查询中如果包含星号,此列不会被查询。

ALIAS expr – 别名。

有三种方式创建表:

1)直接创建

:) create table t1(id UInt16,name String) engine=TinyLog

2)创建一个与其他表具有相同结构的表

复制代码
CREATE TABLE [IF NOT EXISTS] [db.]table_name AS [db2.]name2 [ENGINE = engine]

可以对其指定不同的表引擎声明。如果没有表引擎声明,则创建的表将与db2.name2使用相同的表引擎。

:) create table t2 as t1 engine=Memory

:) desc t2

DESCRIBE TABLE t2

┌─name─┬─type───┬─default_type─┬─default_expression─┐

│ id   │ UInt16 │              │                    │

│ name   │ String │              │                    │

└──────┴────────┴──────────────┴────────────────────┘
复制代码

 

3)使用指定的引擎创建一个与SELECT子句的结果具有相同结构的表,并使用SELECT子句的结果填充它。

语法:

复制代码
CREATE TABLE [IF NOT EXISTS] [db.]table_name ENGINE = engine AS SELECT ...
实例:
先在t2中插入几条数据

:) insert into t1 values(1,'zhangsan'),(2,'lisi'),(3,'wangwu')

:) create table t3 engine=TinyLog as select * from t1

:) select * from t3

┌─id─┬─name─────┐

│  1 │ zhangsan │

│  2 │ lisi     │

│  3 │ wangwu   │

└────┴──────────┘
复制代码

 

.2 INSERT INTO

主要用于向表中添加数据,基本格式如下:

复制代码
INSERT INTO [db.]table [(c1, c2, c3)] VALUES (v11, v12, v13), (v21, v22, v23), ...

实例:

:) insert into t1 values(1,'zhangsan'),(2,'lisi'),(3,'wangwu')

还可以使用select来写入数据:

INSERT INTO [db.]table [(c1, c2, c3)] SELECT ...
复制代码

    实例:

复制代码
:) insert into t2 select * from t3

:) select * from t2

┌─id─┬─name─────┐

│  1 │ zhangsan │

│  2 │ lisi     │

│  3 │ wangwu   │

└────┴──────────┘
复制代码

ClickHouse不支持的修改数据的查询:UPDATE, DELETE, REPLACE, MERGE, UPSERT, INSERT UPDATE。

3 ALTER

ALTER只支持MergeTree系列,Merge和Distributed引擎的表,基本语法:

ALTER TABLE [db].name [ON CLUSTER cluster] ADD|DROP|MODIFY COLUMN ...

参数解析:

ADD COLUMN – 向表中添加新列

DROP COLUMN – 在表中删除列

MODIFY COLUMN – 更改列的类型

案例演示:

1)创建一个MergerTree引擎的表

create table mt_table (date  Date, id UInt8, name String) ENGINE=MergeTree(date, (id, name), 8192);

2)向表中插入一些值

insert into mt_table values ('2019-05-01', 1, 'zhangsan');

insert into mt_table values ('2019-06-01', 2, 'lisi');

insert into mt_table values ('2019-05-03', 3, 'wangwu');

 

3)在末尾添加一个新列age

复制代码
:)alter table mt_table add column age UInt8

:)desc mt_table

┌─name─┬─type───┬─default_type─┬─default_expression─┐

│ date │ Date   │              │                    │

│ id   │ UInt8  │              │                    │

│ name │ String │              │                    │

│ age  │ UInt8  │              │                    │

└──────┴────────┴──────────────┴────────────────────┘

:) select * from mt_table

┌───────date─┬─id─┬─name─┬─age─┐

│ 2019-06-012 │ lisi │   0 │

└────────────┴────┴──────┴─────┘

┌───────date─┬─id─┬─name─────┬─age─┐

│ 2019-05-011 │ zhangsan │   0 │

│ 2019-05-033 │ wangwu   │   0 │

└────────────┴────┴──────────┴─────┘
复制代码

 

4)更改age列的类型

复制代码
:)alter table mt_table modify column age UInt16

:)desc mt_table

┌─name─┬─type───┬─default_type─┬─default_expression─┐

│ date │ Date   │              │                    │

│ id   │ UInt8  │              │                    │

│ name │ String │              │                    │

│ age  │ UInt16 │              │                    │

└──────┴────────┴──────────────┴────────────────────┘
复制代码

 

5)删除刚才创建的age列

复制代码
:)alter table mt_table drop column age

:)desc mt_table

┌─name─┬─type───┬─default_type─┬─default_expression─┐

│ date │ Date   │              │                    │

│ id   │ UInt8  │              │                    │

│ name │ String │              │                    │

└──────┴────────┴──────────────┴────────────────────┘
复制代码

 

 DESCRIBE TABLE

查看表结构

复制代码
:)desc mt_table

┌─name─┬─type───┬─default_type─┬─default_expression─┐

│ date │ Date   │              │                    │

│ id   │ UInt8  │              │                    │

│ name │ String │              │                    │

└──────┴────────┴──────────────┴────────────────────┘
复制代码

 

CHECK TABLE

检查表中的数据是否损坏,他会返回两种结果:

0 – 数据已损坏

1 – 数据完整

该命令只支持Log,TinyLog和StripeLog引擎。

posted @ 2020-02-19 13:54  啊啊啊啊鹏  阅读(787)  评论(0编辑  收藏  举报
1 2