ConcurrentHashMap实现解析
HashTable和ConcurrentHashMap在内部结构上的区别:
HashTable: ConcurrentHashMap:
左边便是Hashtable的实现方式---整个Hash表加锁;而右边则是ConcurrentHashMap的实现方式---分段。ConcurrentHashMap默认将hash表分为16个段,诸如get,put,remove等常用操作只锁当前需要用到的段。这样,原来只能一个线程进入,现在却能同时16个写线程进入(写线程才需要锁定,而读线程几乎不受限制),并发性的提升是显而易见的。以下代码是基于jdk1.5,在jdk1.7中,put操作用了自旋锁的机制,理解起来费劲。
1.segment的数据结构:
static final class Segment<K,V> extends ReentrantLock implements Serializable { //Segment中元素的数量 transient volatile int count; //对table的大小造成影响的操作的次数 transient int modCount; //阈值,Segment里面元素的数量超过这 个值依旧就会对Segment进行扩容 transient int threshold; //链表数组,每个segment维持一个数组 transient volatile HashEntry<K,V>[] table; //负载因子 final float loadFactor; }
2.每个Entry(HashEntry)的结构:
static final class HashEntry<K,V> { //key-value对的key值 final K key; final int hash; //key-value对的value值 volatile V value; //链表指向下一个Entry的引用 final HashEntry<K,V> next; }
3.ConcurrentHashMap的初始化
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } segmentShift = 32 - sshift; segmentMask = ssize - 1; this.segments = Segment.newArray(ssize); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = 1; while (cap < c) cap <<= 1; for (int i = 0; i < this.segments.length; ++i) this.segments[i] = new Segment<K,V>(cap, loadFactor); }
有三个参数:
initialCapacity:表示初始的容量;
loadFactor:表示负载因子参数;
concurrentLevel:表示ConcurrentHashMap内部的Segment的数量;
ConcurrentLevel一经指定,不可改变,后续如果ConcurrentHashMap的元素数量增加导致ConrruentHashMap需要扩容,ConcurrentHashMap不会增加Segment的数量,而只会增加Segment中链表数组的容量大小,这样做扩容过程不需要对整个ConcurrentHashMap做rehash,而只需要对Segment里面的元素做一次rehash。Segment的数量是不大于concurrentLevel的最大的2的指数,就是说Segment的数量永远是2的指数个,这样的好处是方便采用移位操作来进行hash(通过按位与的哈希算法来定位segments数组的索引),加快hash的过程;根据intialCapacity确定Segment的容量的大小,每一个Segment的容量大小也是2的指数(同理),同样使为了加快hash的过程。segmentShift和segmentMask,这两个变量在定位segment时的哈希算法里需要使用,很重要。
4.segment内部的put操作:
//返回的是原来已有的和key相同的HashEntry的value值 V put(K key, int hash, V value, boolean onlyIfAbsent){ //加锁 lock(); try { //当前segment中HashEntry的数量 int c = count; //需要进行扩容,rehash if (c++ > threshold) // ensure capacity rehash(); HashEntry<K,V>[] tab = table; int index = hash & (tab.length - 1);//定位HashEntry,即在HashEntry Table中的下标 HashEntry<K,V> first = tab[index]; HashEntry<K,V> e = first; //找到所在链表中key值和要加入的key值相同的HashEntry while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue; if (e != null) {//找到更新value值即可 oldValue = e.value; if (!onlyIfAbsent) e.value = value; } else {//未找到,e为null,则新生成一个HashEntry,并将原来的链作为自己的next oldValue = null; ++modCount; tab[index] = new HashEntry<K,V>(key, hash, first, value); count = c; // write-volatile } return oldValue; } finally { unlock();//释放锁 } }
4.segment内部的put操作,如上述,不用加锁:
V get(Object key, int hash) { if (count != 0) { // read-volatile HashEntry<K,V> e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) { V v = e.value; if (v != null) return v; return readValueUnderLock(e); // recheck } e = e.next; } } return null; }
V readValueUnderLock(HashEntry<K,V> e) { lock(); try { return e.value; } finally { unlock(); } }注释://recheck,可能有点费解,v怎么可能会是null呢?在put操作时(不是segment内部的操作,而是整个Hash表的put操作中会判断如果value值为null会抛出异常),空值的唯一源头就是HashEntry中的默认值,因为HashEntry中的value不是final的,非同步读取有可能读取到空值。看下put操作的语句:tab[index] = new HashEntry<K,V>(key, hash, first, value),在这条语句中,HashEntry构造函数中对value的赋值以及对tab[index]的赋值可能被重新排序,这就可能导致结点的值为空。这种情况应当很罕见,一旦发生这种情况,ConcurrentHashMap采取的方式是在持有锁的情况下再读一遍,这能够保证读到最新的值,并且一定不会为空值。(引)
5.remove操作:
删除操作是加锁的,有多个删除操作同时进行,只要删除的对象不在同一段内,则可以并发执行,大大提高了并发的效率。整个ConcurrentHashMap操作也是借助于在segment上的操作,先将待删除的HashEntry定位到相应的segment,在segment上做删除操作。
V remove(Object key, int hash, Object value) { lock(); try { int c = count - 1; HashEntry<K,V>[] tab = table; int index = hash & (tab.length - 1); HashEntry<K,V> first = tab[index]; HashEntry<K,V> e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; <span style="white-space:pre"> </span>V oldValue = null; if (e != null) { V v = e.value; if (value == null || value.equals(v)) { oldValue = v; // All entries following removed node can stay // in list, but all preceding ones need to be // cloned. ++modCount; HashEntry<K,V> newFirst = e.next; for (HashEntry<K,V> p = first; p != e; p = p.next) newFirst = new HashEntry<K,V>(p.key, p.hash, newFirst, p.value); tab[index] = newFirst; count = c; // write-volatile } } return oldValue; } finally { unlock(); } }首先找到待删除的节点,如果不存在这个节点就直接返回null,否则就要将待删除节点(节点e)前面的结点复制一遍,尾结点指向e的下一个结点。将e后面的结点复制,可以重复使用。当要删除的结点存在时,删除的最后一步操作要将count的值减一。这必须是最后一步操作,否则读取操作可能看不到之前对段所做的结构性修改。删除之后,e前面的元素的顺序会发生改变:
6.size()操作:
用于统计ConcurrentHashMap中元素的个数,是跨段操作的。首先在没有加锁的情况下,遍历所有的segment,看得到的所有段的count和和modCount和相同与否,重复计算比较RETRIES_BEFORE_LOCK次,如果相同则代表在统计过程中没有发生remove或put操作,直接返回。如果不相同,则把这个过程再重复做一次。若还不相同,则就需要将所有的Segment都加锁,然后遍历。
public int size() { final Segment<K,V>[] segments = this.segments; long sum = 0; long check = 0; int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { check = 0; sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; mcsum += mc[i] = segments[i].modCount; } if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { check += segments[i].count; if (mc[i] != segments[i].modCount) { check = -1; // force retry break; } } } if (check == sum) break; } if (check != sum) { // Resort to locking all segments sum = 0; for (int i = 0; i < segments.length; ++i) segments[i].lock(); for (int i = 0; i < segments.length; ++i) sum += segments[i].count; for (int i = 0; i < segments.length; ++i) segments[i].unlock(); } if (sum > Integer.MAX_VALUE) return Integer.MAX_VALUE; else return (int)sum; }总结:
ConcurrentHashMap利用了锁分离技术实现了更高性能的并发,实现方式很精妙。关于ConcurrentHashMap的更多内容还要继续学习。