flink中的setStreamTimeCharacteristic
TimeCharacteristic
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
此处可以取以下三类值:
Event Time
事件时间,事件(Event)本身的时间,即数据流中事件实际发生的时间,通常使用事件发生时的时间戳来描述,这些事件的时间戳通常在进入流处理应用之前就已经存在了,事件时间反映了事件真实的发生时间。所以,基于事件时间的计算操作,其结果是具有确定性的,无论数据流的处理速度如何、事件到达算子的顺序是否会乱,最终生成的结果都是一样的。
Ingestion Time
摄入时间,事件进入Flink的时间,即将每一个事件在数据源算子的处理时间作为事件时间的时间戳,并自动生成水位线(watermarks,关于watermarks下文会详细分析)。
Ingestion Time从概念上讲介于Event Time和Processing Time之间。与Processing Time相比 ,它的性能消耗更多一些,但结果却更可预测。由于 Ingestion Time使用稳定的时间戳(在数据源处分配了一次),因此对记录的不同窗口操作将引用相同的时间戳,而在Processing Time中每个窗口算子都可以将记录分配给不同的窗口。
与Event Time相比,Ingestion Time无法处理任何乱序事件或迟到的数据,即无法提供确定的结果,但是程序不必指定如何生成水位线。在内部,Ingestion Time与Event Time非常相似,但是可以实现自动分配时间戳和自动生成水位线的功能。
Processing Time
处理时间,根据处理机器的系统时钟决定数据流当前的时间,即事件被处理时当前系统的时间。还以窗口算子为例(关于window,下文会详细分析),基于处理时间的窗口操作是以机器时间来进行触发的,由于数据到达窗口的速率不同,所以窗口算子中使用处理时间会导致不确定的结果。在使用处理时间时,无需等待水位线的到来后进行触发窗口,所以可以提供较低的延迟。
举一个实际的例子:
站在看电影的普通大众来说肯定是关心电影的上映时间;也就是处理时间 也就是processTime
站在研究电影剧情的人来说肯定关心的是电影整个系列的故事发展,应该先看1999的星球大战1....也就是eventTime。
另外再看一个例子:
eventTime 是追求数据准,接受一定的延迟
processTime是追求快,容忍数据存在一定的偏差
flink默认使用eventTime
flink中的setStreamTimeCharacteristic
- flink的TimeCharacteristic枚举定义了三类值,分别是ProcessingTime、IngestionTime、EventTime
- ProcessingTime是以operator处理的时间为准,它使用的是机器的系统时间来作为data stream的时间;IngestionTime是以数据进入flink streaming data flow的时间为准;EventTime是以数据自带的时间戳字段为准,应用程序需要指定如何从record中抽取时间戳字段
- 指定为EventTime的source需要自己定义event time以及emit watermark,或者在source之外通过assignTimestampsAndWatermarks在程序手工指定
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)