dlib cnn_face_detector 人脸检测内部实现简单记录

最近稍微研究了一下dlib人脸检测算法,在这里简单记录一下。

使用方法见  http://dlib.net/cnn_face_detector.py.html 

 

  •   前处理

dlib给的官方链接里面是这么使用的,参数列表里面的第二项数值1,表示放大2倍再塞给网络,不想放大的话,直接设为0就可以了

dets = cnn_face_detector(img, 1)

  • 模型

dib的mmod的人脸检测模型是这样的。列的很清楚了,是通过卷积网络实现的。

 1 // ----------------------------------------------------------------------------------------
 2 
 3 template <long num_filters, typename SUBNET> using con5d = con<num_filters,5,5,2,2,SUBNET>;
 4 template <long num_filters, typename SUBNET> using con5  = con<num_filters,5,5,1,1,SUBNET>;
 5 
 6 template <typename SUBNET> using downsampler  = relu<affine<con5d<32, relu<affine<con5d<32, relu<affine<con5d<16,SUBNET>>>>>>>>>;
 7 template <typename SUBNET> using rcon5  = relu<affine<con5<45,SUBNET>>>;
 8 
 9 using net_type = loss_mmod<con<1,9,9,1,1,rcon5<rcon5<rcon5<downsampler<input_rgb_image_pyramid<pyramid_down<6>>>>>>>>;
10 
11 // ----------------------------------------------------------------------------------------

几个点需要注意,

1.一上来就有一个pyramid_down 6就是把原图按照5/6的scaling ratio去缩小,形成图像金字塔,直到最小的图像的高度小于5

下图是一个Input为375x500的图,可以看到,一共有23层的图像金字塔,最小的一层是5x6. 这也就是dlib非常慢的原因。

 

 

 

 2.其中的affine其实是caffe里面的scale,类似于BN,每个值放大a倍再加一个b。

  • 后处理

在dlib内部会做nms,还会丢弃confidence threshould过低的结果,所以算出来的PR曲线后半截会没有掉

 

 

 
posted @ 2021-09-04 17:48  sunny,lee  阅读(438)  评论(0编辑  收藏  举报