itemgetter和attrgetter能替代从序列中取出元素或读取对象属性的lambda表达式,会自动构建函数
itemgetter
1,根据元组某个字段给元组列表排序,下例中
itemgetter(1) == lambda field : field[1]
2,如果把多个参数传给itemgetter ,它构建的函数会返回提取的值构成元组
metro_data = [ ("tykyo",'jp',36.944,(35.68944,139.69166)), ("delhi ncr",'in',21.935,(36.64944,138.79166)), ("mexico city",'mx',46.944,(33.68944,129.69166)), ("new york-newark",'us',20.944,(35.68944,139.69166)), ("sao paulo",'br',16.944,(25.68944,149.69166)) ] #1 from operator import itemgetter for city in sorted(metro_data,key=itemgetter(1)): print(city) #2 cc_name=itemgetter(1,0) for city in metro_data: print(cc_name(city))
返回:
('sao paulo', 'br', 16.944, (25.68944, 149.69166))
('delhi ncr', 'in', 21.935, (36.64944, 138.79166))
('tykyo', 'jp', 36.944, (35.68944, 139.69166))
('mexico city', 'mx', 46.944, (33.68944, 129.69166))
('new york-newark', 'us', 20.944, (35.68944, 139.69166))-------------------------------------------------------------------------------------
('jp', 'tykyo')
('in', 'delhi ncr')
('mx', 'mexico city')
('us', 'new york-newark')
('br', 'sao paulo')
attrgetter
它创建的函数根据名称提取对象的属性
metro_data = [ ("tykyo",'jp',36.944,(35.68944,139.69166)), ("delhi ncr",'in',21.935,(36.64944,138.79166)), ("mexico city",'mx',46.944,(33.68944,129.69166)), ("new york-newark",'us',20.944,(35.68944,139.69166)), ("sao paulo",'br',16.944,(25.68944,149.69166)) ] from operator import itemgetter from collections import namedtuple LatLong = namedtuple('LatLong','lat long')#定义LatLong Metropolis = namedtuple('Metropolis','name cc pop coord')#定义Metropolis #使用嵌套的元祖拆包提取(Lat,Long) Metro_areas = [Metropolis(name,cc,pop,LatLong(Lat,Long)) for name,cc,pop,(Lat,Long) in metro_data] print(Metro_areas) print(Metro_areas[0]) print(Metro_areas[0].coord) print(Metro_areas[0].coord.lat) from operator import attrgetter name_lat = attrgetter('name','coord.lat') for city in sorted(Metro_areas,key=attrgetter('coord.lat')): print(name_lat(city))
返回:
[Metropolis(name='tykyo', cc='jp', pop=36.944, coord=LatLong(lat=35.68944, long=139.69166)), Metropolis(name='delhi ncr', cc='in', pop=21.935, coord=LatLong(lat=36.64944, long=138.79166)), Metropolis(name='mexico city', cc='mx', pop=46.944, coord=LatLong(lat=33.68944, long=129.69166)), Metropolis(name='new york-newark', cc='us', pop=20.944, coord=LatLong(lat=35.68944, long=139.69166)), Metropolis(name='sao paulo', cc='br', pop=16.944, coord=LatLong(lat=25.68944, long=149.69166))]
Metropolis(name='tykyo', cc='jp', pop=36.944, coord=LatLong(lat=35.68944, long=139.69166))
LatLong(lat=35.68944, long=139.69166)
35.68944
('sao paulo', 25.68944)
('mexico city', 33.68944)
('tykyo', 35.68944)
('new york-newark', 35.68944)
('delhi ncr', 36.64944)
functools.partial
:冻结参数
:基于一个函数创建一个新的可调用对象,把原函数的某些参数固定,使用这个函数可以吧接受一个或多个参数的函数改编成需要回调的API,这样参数更少
from operator import mul from functools import partial triple = partial(mul,3) print(triple(7)) l = list(map(triple,range(1,10))) print(l) 返回: 21 [3, 6, 9, 12, 15, 18, 21, 24, 27]
def tag(name,*content,cls=None,**attrs): if cls is not None: attrs['class'] = cls if attrs: attrs_str = ''.join(' %s="%s" ' % (attr,value) for attr,value in sorted(attrs.items())) else: attrs_str='' if content: return '\n'.join('<%s %s >%s</%s>' % (name,attrs_str,c,name) for c in content) else: return '<%s%s />' % (name,attrs_str) from functools import partial picture = partial(tag,'img',cls='pic-frame') print(picture) p = picture(src='sunlong.jpeg') print(p) print(picture.args) print(picture.keywords) 返回: functools.partial(<function tag at 0x00000000022178C8>, 'img', cls='pic-frame') <img class="pic-frame" src="sunlong.jpeg" /> ('img',) {'cls': 'pic-frame'}
本文来自博客园,作者:孙龙-程序员,转载请注明原文链接:https://www.cnblogs.com/sunlong88/articles/10426361.html