Elasticsearch学习之深入聚合分析三---案例实战

1. 统计指定品牌下每个颜色的销量

任何的聚合,都必须在搜索出来的结果数据中进行,搜索结果,就是聚合分析操作的scope

GET /tvs/sales/_search 
{
  "size": 0,
  "query": {
    "term": {
      "brand": {
        "value": "小米"
      }
    }
  },
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      }
    }
  }
}

2. 单个品牌与所有品牌销量对比

一个聚合操作,必须在query的搜索结果范围内执行出来两个结果,一个结果,是基于query搜索结果来聚合的; 一个结果,是对所有数据执行聚合的

GET /tvs/sales/_search 
{
  "size": 0, 
  "query": {
    "term": {
      "brand": {
        "value": "长虹"
      }
    }
  },
  "aggs": {
    "single_brand_avg_price": {
      "avg": {
        "field": "price"
      }
    },
    "all": {
      "global": {},
      "aggs": {
        "all_brand_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

global:就是global bucket,就是将所有数据纳入聚合的scope,而不管之前的query

3. 统计价格大于1200的电视平均价格

搜索+聚合,过滤+聚合

GET /tvs/sales/_search 
{
  "size": 0,
  "query": {
    "constant_score": {
      "filter": {
        "range": {
          "price": {
            "gte": 1200
          }
        }
      }
    }
  },
  "aggs": {
    "avg_price": {
      "avg": {
        "field": "price"
      }
    }
  }
}

4. 统计电视品牌最近一个月的销量

GET /tvs/sales/_search 
{
  "size": 0,
  "query": {
    "term": {
      "brand": {
        "value": "长虹"
      }
    }
  },
  "aggs": {
    "recent_150d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-150d"
          }
        }
      },
      "aggs": {
        "recent_150d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    },
    "recent_140d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-140d"
          }
        }
      },
      "aggs": {
        "recent_140d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    },
    "recent_130d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-130d"
          }
        }
      },
      "aggs": {
        "recent_130d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

aggs.filter,针对的是聚合去做的,如果放query里面的filter,是全局的,会对所有的数据都有影响

但是,如果,比如说你要统计长虹电视最近1个月的平均值; 最近3个月的平均值; 最近6个月的平均值

bucket filter:就是对不同的bucket下的aggs,进行filter

5. 统计每个颜色的电视的销售额,按照销售额降序排序

GET /tvs/sales/_search 
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color",
        "order": {
          "avg_price": "asc"
        }
      },
      "aggs": {
        "avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

类似引用其他变量,本例中就是引用aggs中统计的每个颜色电视的平均价格

6. 颜色+品牌下钻分析时按最深层metric进行排序

GET /tvs/sales/_search 
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "group_by_brand": {
          "terms": {
            "field": "brand",
            "order": {
              "avg_price": "desc"
            }
          },
          "aggs": {
            "avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
  }
}

按照每种颜色下的每种品牌的平均价格进行降序排列

posted @ 2017-07-01 10:19  天~宇~翱~翔  阅读(438)  评论(0编辑  收藏  举报