Hadoop学习之Hadoop案例分析
一、日志数据分析
1.背景
1.1 ***论坛日志,数据分为两部分组成,原来是一个大文件,是56GB;以后每天生成一个文件,大约是150-200MB之间;
每行记录有5部分组成:1.访问ip;2.访问时间;3.访问资源;4.访问状态;5.本次流量
1.2 日志格式是apache common日志格式;
1.3 分析一些核心指标,供运营决策者使用;
1.3.1 浏览量PV
定义:页面浏览量即为PV(Page View),是指所有用户浏览页面的总和,一个独立用户每打开一个页面就被记录1 次。分析:网站总浏览量,可以考核用户对于网站的兴趣,就像收视率对于电视剧一样。但是对于网站运营者来说,更重要的是每个栏目下的浏览量。计算公式:记录计数。注意要和后面的IP数区分开来,浏览量可以包括重复ip地址。
1.3.2 注册用户数
计算公式:对访问member.php?mod=register的url,计数
1.3.3 IP数
定义:一天之内,访问网站的不同独立IP 个数求和,其中同一IP无论访问了几个页面,独立IP 数均为1。分析:这是我们最熟悉的一个概念,无论同一个IP上有多少电脑,或者其他用户,从某种程度上来说,独立IP的多少,是衡量网站推广活动好坏最直接的数据。公式:对不同ip计数
1.3.4 跳出率
定义:只浏览了一个页面便离开了网站的访问次数占总的访问次数的百分比,即只浏览了一个页面的访问次数 / 全部的访问次数汇总。分析:跳出率是非常重要的访客黏性指标,它显示了访客对网站的兴趣程度:跳出率越低说明流量质量越好,访客对网站的内容越感兴趣,这些访客越可能是网站的有效用户、忠实用户。
该指标也可以衡量网络营销的效果,指出有多少访客被网络营销吸引到宣传产品页或网站上之后,又流失掉了,可以说就是煮熟的鸭子飞了。比如,网站在某媒体上打广告推广,分析从这个推广来源进入的访客指标,其跳出率可以反映出选择这个媒体是否合适,广告语的撰写是否优秀,以及网站入口页的设计是否用户体验良好。
计算公式:(1)统计一天内只出现一条记录的ip,称为跳出数;(2)跳出数/PV
1.3.5 板块热度排行
定义:版块的访问情况排行。分析:巩固热点版块成绩,加强冷清版块建设。同时对学科建设也有影响。计算公式:按访问次数统计排序
1.4 开发该系统的目的是分了获取一些业务相关的指标,这些指标在第三方工具中无法获得的;
2 开发步骤
2.1 使用flume将日志文件上传到HDFS;
如果是日志服务器数据较小、压力较小,可以直接使用shell命令把数据上传到HDFS中;如果是日志服务器数据较大、压力较答,使用NFS在另一台服务器上上传数据;如果日志服务器非常多、数据量大,使用flume进行数据处理;
2.2 编写MapReduce程序对HDFS中的数据进行清洗;
2.3 使用Hive对清洗后的数据进行统计;
2.4 将统计后的数据通过Sqoop导出到MySql中;
2.5 如果需要查看详细数据,则可以通过HBase进行展现;
3 详细概述
3.1 使用Shell数据将数据从Linux上传到HDFS中
3.1.1 首先在HDFS上创建目录
命令:$HADOOP_HOME/bin/hadoop fs -mkdir /hmbbs_logs
3.1.2 编写Shell脚本,用于上传文件到HDFS中
yesterday=`date --date='1 days ago' +%Y_%m_%d`
hadoop fs -put /apache_logs/access_${yesterday}.log /hmbbs_logs
3.1.3 把脚本upload_to_hdfs.sh配置到crontab(定时器)中,执行命令crontab -e, 写法如下
* 1 * * * upload_to_hdfs.sh
3.2 使用MapReduce对数据进行清洗,将清洗后的数据保存到HDFS中的/hmbbs_cleaned目录下,每天产生一个子目录
3.3 使用Hive对清洗后的数据进行统计
3.3.1 首先建立一个外部分区表,脚本如下
CREATE EXTERNAL TABLE hmbbs(ip string, atime string, url string) PARTITIONED BY (logdate string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LOCATION '/hmbbs_cleaned';
3.3.2 对新建表增加分区,脚本如下
ALTER TABLE hmbbs ADD PARTITION(logdate='2013_05_30') LOCATION '/hmbbs_cleaned/2013_05_30';
把代码增加到upload_to_hdfs.sh中,内容如下
hive -e "ALTER TABLE hmbbs ADD PARTITION(logdate='${yesterday}') LOCATION '/hmbbs_cleaned/${yesterday}';"
3.3.3 对数据进行统计,代码如下
CREATE TABLE hmbbs_pv_2013_05_30 AS SELECT COUNT(1) AS PV FROM hmbbs WHERE logdate='2013_05_30';
统计每日的注册用户数,代码如下
CREATE TABLE hmbbs_reguser_2013_05_30 AS SELECT COUNT(1) AS REGUSER FROM hmbbs WHERE logdate='2013_05_30' AND
统计每日的独立ip,代码如下
CREATE TABLE hmbbs_ip_2013_05_30 AS SELECT COUNT(DISTINCT ip) AS IP FROM hmbbs WHERE logdate='2013_05_30';
统计每日的跳出用户,代码如下
CREATE TABLE hmbbs_jumper_2013_05_30 AS SELECT COUNT(1) AS jumper FROM (SELECT COUNT(ip) AS times FROM hmbbs WHERE
把每天统计的数据放入一张表
CREATE TABLE hmbbs_2013_05_30 AS SELECT '2013_05_30', a.pv, b.reguser, c.ip, d.jumper FROM hmbbs_pv_2013_05_30 hmbbs_reguser_2013_05_30 b ON 1=1 JOIN hmbbs_ip_2013_05_30 c ON 1=1 JOIN hmbbs_jumper_2013_05_30 d ON 1=1 ;
3.4 使用Sqoop将统计结果导出到MySql中
sqoop export --connect jdbc:mysql://hadoop0:3306/hmbbs --username root --password admin --table hmbbs_logs_stat --fields- terminated-by '\001' --export-dir '/user/hive/warehouse/hmbbs_2013_05_30'
3.5 完善执行的shell脚本
3.5.1 初始化数据的脚本
3.5.2 每日执行的脚本
4 表结构
4.1 HBase表结构
明细表 |
|
行键 |
ip:date:random |
明细列族 |
cf:all |
4.2 MySql表结构
ip、版块访问表 |
|
日期 |
acc_date |
ip |
ip |
版块 |
forum |
浏览量 |
pv |
汇总表 |
|
日期 |
acc_date |
浏览量 |
pv |
新用户 |
newer |
独立ip |
iip |
跳出数 |
jumper |