hadoop-eclipse环境搭建(二)

  Eclipse插件配置

  第一步:把我们的"hadoop-eclipse-plugin-1.0.0.jar"放到Eclipse的目录的"plugins"中,然后重新Eclipse即可生效。

  上面是我的"hadoop-eclipse-plugin"插件放置的地方。重启Eclipse如下图:

 

 

 

  第二步:选择"Window"菜单下的"Preference",然后弹出一个窗体,在窗体的左侧,有一列选项,里面会多出"Hadoop Map/Reduce"选项,点击此选项,选择Hadoop的安装目录(如我的Hadoop目录:E:\HadoopWorkPlat\hadoop-1.0.0)。结果如下图:

 

 

  第三步:切换"Map/Reduce"工作目录,有两种方法:

  1)选择"Window"菜单下选择"Open Perspective",弹出一个窗体,从中选择"Map/Reduce"选项即可进行切换。

 

 

  2)在Eclipse软件的右上角,点击图标""中的"",点击"Other"选项,也可以弹出上图,从中选择"Map/Reduce",然后点击"OK"即可确定。

  切换到"Map/Reduce"工作目录下的界面如下图所示。

 

 

  第四步:建立与Hadoop集群的连接,在Eclipse软件下面的"Map/Reduce Locations"进行右击,弹出一个选项,选择"New Hadoop Location",然后弹出一个窗体。

 

 

 

  注意上图中的红色标注的地方,是需要我们关注的地方。

  • Location Name:可以任意其,标识一个"Map/Reduce Location"
  • Map/Reduce Master
    Host:192.168.1.2(Master.Hadoop的IP地址)
    Port:9001
  • DFS Master 
    Use M/R Master host:前面的勾上。(因为我们的NameNode和JobTracker都在一个机器上。)
    Port:9000
  • User name:hadoop(默认为Win系统管理员名字,因为我们之前改了所以这里就变成了hadoop。)

 

 

  备注:这里面的Host、Port分别为你在mapred-site.xml、core-site.xml中配置的地址及端口。不清楚的可以参考"Hadoop集群_第5期_Hadoop安装配置_V1.0"进行查看。

   接着点击"Advanced parameters"从中找见"hadoop.tmp.dir",修改成为我们Hadoop集群中设置的地址,我们的Hadoop集群是"/usr/hadoop/tmp",这个参数在"core-site.xml"进行了配置。

 

 

  点击"finish"之后,会发现Eclipse软件下面的"Map/Reduce Locations"出现一条信息,就是我们刚才建立的"Map/Reduce Location"。

 

    

  第五步:查看HDFS文件系统,并尝试建立文件夹和上传文件。点击Eclipse软件左侧的"DFS Locations"下面的"Win7ToHadoop",就会展示出HDFS上的文件结构。

 

    

  用SecureCRT远程登录"Master.Hadoop"服务器,用下面命令查看是否已经建立一个的文件夹。

hadoop fs -ls

  到此为止,我们的Hadoop Eclipse开发环境已经配置完毕,不尽兴的同学可以上传点本地文件到HDFS分布式文件上,可以互相对比意见文件是否已经上传成功。

2、Eclipse上运行WordCount

 创建MapReduce项目

   从"File"菜单,选择"Other",找到"Map/Reduce Project",然后选择它。

 

    

  接着,填写MapReduce工程的名字为"WordCountProject",点击"finish"完成。

  目前为止我们已经成功创建了MapReduce项目,我们发现在Eclipse软件的左侧多了我们的刚才建立的项目。

    

 建立一个启动类 test包下面的A

 

 

3.4 创建A类

 

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.examples.WordCount;
import org.apache.hadoop.examples.WordCount.IntSumReducer;
import org.apache.hadoop.examples.WordCount.TokenizerMapper;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class A {
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        conf.set("mapred.job.tracker", "192.168.1.100:9001");
        String[] addrs = new String[] { "hdfs://192.168.1.100:9000/user/sunfan/input", "hdfs://192.168.1.100:9000/user/sunfan/out3" };
        String[] otherArgs = new GenericOptionsParser(conf, addrs).getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage: wordcount <in> <out>");
            System.exit(2);
        }
        Job job = new Job(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

运行

15/02/19 17:10:56 INFO input.FileInputFormat: Total input paths to process : 2
15/02/19 17:10:56 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/02/19 17:10:56 WARN snappy.LoadSnappy: Snappy native library not loaded
15/02/19 17:10:56 INFO mapred.JobClient: Running job: job_201502181818_0033
15/02/19 17:10:57 INFO mapred.JobClient:  map 0% reduce 0%
15/02/19 17:11:00 INFO mapred.JobClient:  map 50% reduce 0%
15/02/19 17:11:01 INFO mapred.JobClient:  map 100% reduce 0%
15/02/19 17:11:07 INFO mapred.JobClient:  map 100% reduce 33%
15/02/19 17:11:09 INFO mapred.JobClient:  map 100% reduce 100%
15/02/19 17:11:09 INFO mapred.JobClient: Job complete: job_201502181818_0033
15/02/19 17:11:09 INFO mapred.JobClient: Counters: 29
15/02/19 17:11:09 INFO mapred.JobClient:   Job Counters 
15/02/19 17:11:09 INFO mapred.JobClient:     Launched reduce tasks=1
15/02/19 17:11:09 INFO mapred.JobClient:     SLOTS_MILLIS_MAPS=4470
15/02/19 17:11:09 INFO mapred.JobClient:     Total time spent by all reduces waiting after reserving slots (ms)=0
15/02/19 17:11:09 INFO mapred.JobClient:     Total time spent by all maps waiting after reserving slots (ms)=0
15/02/19 17:11:09 INFO mapred.JobClient:     Launched map tasks=2
15/02/19 17:11:09 INFO mapred.JobClient:     Data-local map tasks=2
15/02/19 17:11:09 INFO mapred.JobClient:     SLOTS_MILLIS_REDUCES=8271
15/02/19 17:11:09 INFO mapred.JobClient:   File Output Format Counters 
15/02/19 17:11:09 INFO mapred.JobClient:     Bytes Written=25
15/02/19 17:11:09 INFO mapred.JobClient:   FileSystemCounters
15/02/19 17:11:09 INFO mapred.JobClient:     FILE_BYTES_READ=55
15/02/19 17:11:09 INFO mapred.JobClient:     HDFS_BYTES_READ=261
15/02/19 17:11:09 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=176890
15/02/19 17:11:09 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=25
15/02/19 17:11:09 INFO mapred.JobClient:   File Input Format Counters 
15/02/19 17:11:09 INFO mapred.JobClient:     Bytes Read=25
15/02/19 17:11:09 INFO mapred.JobClient:   Map-Reduce Framework
15/02/19 17:11:09 INFO mapred.JobClient:     Map output materialized bytes=61
15/02/19 17:11:09 INFO mapred.JobClient:     Map input records=2
15/02/19 17:11:09 INFO mapred.JobClient:     Reduce shuffle bytes=61
15/02/19 17:11:09 INFO mapred.JobClient:     Spilled Records=8
15/02/19 17:11:09 INFO mapred.JobClient:     Map output bytes=41
15/02/19 17:11:09 INFO mapred.JobClient:     CPU time spent (ms)=1110
15/02/19 17:11:09 INFO mapred.JobClient:     Total committed heap usage (bytes)=336928768
15/02/19 17:11:09 INFO mapred.JobClient:     Combine input records=4
15/02/19 17:11:09 INFO mapred.JobClient:     SPLIT_RAW_BYTES=236
15/02/19 17:11:09 INFO mapred.JobClient:     Reduce input records=4
15/02/19 17:11:09 INFO mapred.JobClient:     Reduce input groups=3
15/02/19 17:11:09 INFO mapred.JobClient:     Combine output records=4
15/02/19 17:11:09 INFO mapred.JobClient:     Physical memory (bytes) snapshot=337612800
15/02/19 17:11:09 INFO mapred.JobClient:     Reduce output records=3
15/02/19 17:11:09 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=1139060736
15/02/19 17:11:09 INFO mapred.JobClient:     Map output records=4

 

 

本文前半部分引用 http://www.cnblogs.com/xia520pi/archive/2012/04/08/2437875.html,感谢原作者。

 

posted on 2015-02-19 17:13  sunfan  阅读(297)  评论(0编辑  收藏  举报