路飞学城—Python爬虫实战密训班 第二章
路飞学城—Python爬虫实战密训班 第二章
一、Selenium基础
Selenium是一个第三方模块,可以完全模拟用户在浏览器上操作(相当于在浏览器上点点点)。
1.安装
- pip install selenium
2.优缺点
- 无需查看和确定请求头请求体等数据细节,直接模拟人点击浏览器的行为
- 效率不高
3.依赖驱动:
- Firefox
https://github.com/mozilla/geckodriver/releases
- Chrome
http://chromedriver.storage.googleapis.com/index.html
4.与selenium相关的基本操作
from selenium import webdriver # 配置驱动 #驱动一定要自己下载并放在一个目录,否则会出错 option = webdriver.ChromeOptions() driver = webdriver.Chrome('/Users/wupeiqi/drivers/chromedriver', chrome_options=option) # 1. 控制浏览器打开指定页面 driver.get("https://dig.chouti.com/all/hot/recent/1") # 2. 找到登录按钮 btn_login = driver.find_element_by_xpath('//*[@id="login-link-a"]') # 3. 点击按钮 btn_login.click() # 4. 找到手机标签 input_user = driver.find_element_by_xpath('//*[@id="mobile"]') # 5. 找到密码标签 input_pwd = driver.find_element_by_xpath('//*[@id="mbpwd"]') # 6. 输入用户名 input_user.send_keys('13121758648') # 7. 输入密码 input_pwd.send_keys('woshiniba') # 8. 点击登录按钮 input_submit = driver.find_element_by_xpath( '//*[@id="footer-band"]/div[5]/div/div/div[1]/div[2]/div[4]/div[2]/div/span[1]') input_submit.click() print(driver.get_cookies()) # # 9. 点击跳转 # news = driver.find_element_by_xpath('//*[@id="newsContent20646261"]/div[1]/a[1]') # # news.click() # driver.execute_script("arguments[0].click();", news) # 10.管理浏览器 # driver.close()
二、破解滑动验证码
WuSir为我们带来的精彩的讲解,从__main__的主函数调用开始,先讲了图片的截取和距离的测算,接下来分析了怎么模拟人类行为的滑动过程,通过速度和加速度的空值实现,而且会故意制造匹配之后的小幅振动行为,最后点击确定就可以破解该验证码,重点是像素的选择和速度的调节,感谢!
from selenium import webdriver from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait import os import shutil from PIL import Image import time def get_snap(driver): driver.save_screenshot('full_snap.png') page_snap_obj = Image.open('full_snap.png') return page_snap_obj def get_image(driver): img = driver.find_element_by_class_name('geetest_canvas_img') time.sleep(2) location = img.location size = img.size left = location['x'] top = location['y'] right = left + size['width'] bottom = top + size['height'] page_snap_obj = get_snap(driver) image_obj = page_snap_obj.crop((left * 2, top * 2, right * 2, bottom * 2)) # image_obj.show() with open('code.png', 'wb') as f: image_obj.save(f, format='png') return image_obj def get_distance(image1, image2): # start = 0 # threhold = 70 # for i in range(start, image1.size[0]): # for j in range(0, image1.size[1]): # rgb1 = image1.load()[i, j] # rgb2 = image2.load()[i, j] # res1 = abs(rgb1[0] - rgb2[0]) # res2 = abs(rgb1[1] - rgb2[1]) # res3 = abs(rgb1[2] - rgb2[2]) # # print(res1,res2,res3) # if not (res1 < threhold and res2 < threhold and res3 < threhold): # print(111111, i, j) # return i - 13 # print(2222, i, j) # return i - 13 start = 0 threhold = 70 v = [] for i in range(start, image1.size[0]): for j in range(0, image1.size[1]): rgb1 = image1.load()[i, j] rgb2 = image2.load()[i, j] res1 = abs(rgb1[0] - rgb2[0]) res2 = abs(rgb1[1] - rgb2[1]) res3 = abs(rgb1[2] - rgb2[2]) if not (res1 < threhold and res2 < threhold and res3 < threhold): print(i) if i not in v: v.append(i) stop = 0 for i in range(0, len(v)): val = i + v[0] if v[i] != val: stop = v[i] break width = stop - v[0] print(stop, v[0], width) return width def get_tracks(distance): import random exceed_distance = random.randint(0, 5) distance += exceed_distance # 先滑过一点,最后再反着滑动回来 v = 0 t = 0.2 forward_tracks = [] current = 0 mid = distance * 3 / 5 while current < distance: if current < mid: a = random.randint(1, 3) else: a = random.randint(1, 3) a = -a s = v * t + 0.5 * a * (t ** 2) v = v + a * t current += s forward_tracks.append(round(s)) # 反着滑动到准确位置 v = 0 t = 0.2 back_tracks = [] current = 0 mid = distance * 4 / 5 while abs(current) < exceed_distance: if current < mid: a = random.randint(1, 3) else: a = random.randint(-3, -5) a = -a s = -v * t - 0.5 * a * (t ** 2) v = v + a * t current += s back_tracks.append(round(s)) return {'forward_tracks': forward_tracks, 'back_tracks': list(reversed(back_tracks))} def crack(driver): # 破解滑动认证 # 1、点击按钮,得到没有缺口的图片 button = driver.find_element_by_xpath('//*[@id="embed-captcha"]/div/div[2]/div[1]/div[3]') button.click() # 2、获取没有缺口的图片 image1 = get_image(driver) # 3、点击滑动按钮,得到有缺口的图片 button = driver.find_element_by_class_name('geetest_slider_button') button.click() # 4、获取有缺口的图片 image2 = get_image(driver) # 5、对比两种图片的像素点,找出位移 distance = get_distance(image1, image2) print(distance) # # 6、模拟人的行为习惯,根据总位移得到行为轨迹 tracks = get_tracks(int(distance / 2)) # 7、按照行动轨迹先正向滑动,后反滑动 button = driver.find_element_by_class_name('geetest_slider_button') ActionChains(driver).click_and_hold(button).perform() # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速 for track in tracks['forward_tracks']: ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动 time.sleep(0.5) for back_track in tracks['back_tracks']: ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform() # # # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率 ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform() ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform() # # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手 time.sleep(0.5) ActionChains(driver).release().perform() def login_luffy(username, password): driver = webdriver.Chrome('/Users/wupeiqi/drivers/chromedriver') driver.set_window_size(960, 800) try: # 1、输入账号密码回车 driver.implicitly_wait(3) driver.get('https://www.luffycity.com/login') input_username = driver.find_element_by_xpath('//*[@id="router-view"]/div/div/div[2]/div[2]/input[1]') input_pwd = driver.find_element_by_xpath('//*[@id="router-view"]/div/div/div[2]/div[2]/input[2]') input_username.send_keys(username) input_pwd.send_keys(password) # 2、破解滑动认证 crack(driver) time.sleep(10) # 睡时间长一点,确定登录成功 finally: pass # driver.close() if __name__ == '__main__': login_luffy(username='wupeiqi', password='123123123')
三:总结
前半段的直播都是由咸湿的,哦不对、是亲切的Alex老师为我们分享了关于职场方面的一些东西,尤其是咸湿的,哦不对、是亲切的Alex老师用他曾经的经历来讲述这些东西,这些经验和思想,听完后对大家讨论得都很热烈,挺受启发的。
通过学习selenium模块,使得部分对于很复杂的爬虫,用selenium做起来还是比较方便的。但如果使用selenium模块的话,对于爬虫程序可以说基本毫无性能可言,一般的解决方案可以通过selenium + 其它模块一起配合使用来相互弥补。最后,WuSir通过selenium 和 PIL模块一起配合使用,破解了极验的滑动验证码、但此方式有个大问题,只能处理简单的图片,对于复杂的图片命中率会不高,面对更加复杂的验证码只能通过打码平台来解决了。