会员
周边
众包
新闻
博问
闪存
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
suncongbo
Powered by
博客园
博客园
|
首页
|
新随笔
|
联系
|
订阅
|
管理
上一页
1
···
13
14
15
16
17
18
19
20
21
···
28
下一页
2019年8月2日
BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)
摘要: 题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2655 题解 据说有一种神仙容斥做法,但我不会。 以及貌似网上大多数人的dp和我的做法都不一样。 下面讲我的做法: 首先由于元素互不相同,那么显然可以先不考虑顺序。 所以要求的就是$n![x
阅读全文
posted @ 2019-08-02 22:23 suncongbo
阅读(208)
评论(0)
推荐(0)
编辑
2019年8月1日
POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)
摘要: 题目链接 http://poj.org/problem?id=1430 题解 qaq写了道水题…… 在模$2$意义下重写一下第二类Stirling数的递推式: $$S(n,m)=S(n 1,m 1)+(S(n 1,m)\ \text{and}\ m)$$ 令$S'(n,m)=S(n+m,m)$, 那
阅读全文
posted @ 2019-08-01 14:01 suncongbo
阅读(210)
评论(0)
推荐(0)
编辑
BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)
摘要: 题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4555 题解 终于不是神仙题了啊。。。 首先$O(n\log n)$的FFT做法非常明显
阅读全文
posted @ 2019-08-01 12:08 suncongbo
阅读(179)
评论(0)
推荐(0)
编辑
2019年7月31日
Luogu P4707 重返现世 (拓展Min-Max容斥、DP)
摘要: 题目链接 https://www.luogu.org/problem/P4707 题解 最近被神仙题八连爆了…… 首先Min Max容斥肯定都能想到,问题是这题要用一个扩展版的——Kth Min Max容斥 这个东西需要对Min Max容斥的本质有着比较深刻的理解。 首先我们从另一个角度证明Min
阅读全文
posted @ 2019-07-31 18:28 suncongbo
阅读(213)
评论(0)
推荐(0)
编辑
LOJ #6358 前夕 (组合计数、容斥原理)
摘要: 题目链接 https://loj.ac/problem/6358 (另外一道$4$的倍数题左转loj 6356) 题意 题面写得就像一坨X一样,我来复述一下吧。 有$N$个元素构成的集合,要从$2^N$个子集中选出若干个使得交的大小为$4$的倍数。不选算交为空。 样例解释: 选空集有$8$种方案,不
阅读全文
posted @ 2019-07-31 11:17 suncongbo
阅读(351)
评论(0)
推荐(0)
编辑
2019年7月30日
BZOJ 3622 Luogu P4859 已经没有什么好害怕的了 (容斥原理、DP)
摘要: 题目链接 (Luogu) https://www.luogu.org/problem/P4859 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3622 题解 我依然啥都不会啊…… 先给$A,B$数组从小到大排序。 考虑容斥,设$f[
阅读全文
posted @ 2019-07-30 14:51 suncongbo
阅读(184)
评论(0)
推荐(0)
编辑
BZOJ 2669 Luogu P3160 [CQOI2012]局部极小值 (容斥原理、DP)
摘要: 题目链接 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=2669 (luogu) https://www.luogu.org/problem/P3160 题解 这道题充分暴露了我的菜。。 显然两个局部极小值点不能相邻,所以最多有$8$
阅读全文
posted @ 2019-07-30 10:47 suncongbo
阅读(207)
评论(0)
推荐(0)
编辑
2019年7月29日
Blog #10
该文被密码保护。
阅读全文
posted @ 2019-07-29 11:03 suncongbo
阅读(13)
评论(0)
推荐(0)
编辑
2019年7月28日
Blog #9
该文被密码保护。
阅读全文
posted @ 2019-07-28 21:25 suncongbo
阅读(3)
评论(0)
推荐(0)
编辑
【学习笔记】自然数幂和
摘要: 温馨提示: 本文文档大小约$11KB$. 引入 自然数幂和是一个我们从小就耳熟能详的经典问题。定义$S(m,n)=\sum^{m}_{i=0} i^n$, 显然$S(m,n)$为关于$m$的不超过$(n+1)$次多项式,那么给定$n$, 如何快速求出这个多项式的系数?或者给定$m$和$n$, 如何快
阅读全文
posted @ 2019-07-28 09:27 suncongbo
阅读(1053)
评论(0)
推荐(2)
编辑
上一页
1
···
13
14
15
16
17
18
19
20
21
···
28
下一页