线性代数+图论好题。
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3168
(luogu) https://www.luogu.org/problemnew/show/P4100
题解: 首先\(A\)矩阵必须满秩。有一个结论是,设矩阵\(C\)满足\(CA=B\), 则\(A\)的第\(i\)行可以被\(B\)的第\(j\)行来替代当且仅当\(C_{j,i}\ne 0\).
若\(B_j\)可以用\(A\)除了\(i\)之外的行向量线性表示,那么\(B_j\)无法替换\(A_i\). 若\(C_{j,i}=0\)代表用\(A\)矩阵的行向量表示\(B_j\)的系数向量中\(A_i\)这一项的系数为\(0\).
那么\(CA=B\)可以推出\(CAA^{-1}=BA^{-1}, C=BA^{-1}\)
数学被各种吊打啊……
然后我们就在\(O(n^3)\)时间内求出了对于每一个\(i,j\), \(A\)中第\(i\)行是否能被\(B\)中第\(j\)行替换
问题转化成了,给一张二分图,保证有完美匹配,求一个完美匹配使得\(A\)中的每个点在\(B\)中的匹配点构成的排列的字典序最小。
这个东西,貌似必须用匈牙利算法。。先跑一边随便求出一个完美匹配,然后从\(1\)号到\(n\)号每个点再匹配尽量小的,如果能找到使当前\(i\)号点更小,且不影响\(i\)号点前面的点的交错路,那么就可以更新答案了。
时间复杂度\(O(n^3)\).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 300;
const int P = 942030731;
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}
struct Matrix
{
llong a[N+3][N+3]; int n;
Matrix() {}
Matrix(int _n) {n = _n; for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) a[i][j] = 0ll;}
void read(int _n)
{
n = _n;
for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) scanf("%lld",&a[i][j]);
}
void write()
{
printf("%d\n",n);
for(int i=1; i<=n; i++) {for(int j=1; j<=n; j++) printf("%lld ",a[i][j]); puts("");}
}
Matrix operator *(const Matrix &arg)
{
Matrix ret = Matrix(n);
for(int i=1; i<=n; i++)
{
for(int k=1; k<=n; k++)
{
for(int j=1; j<=n; j++)
{
ret.a[i][j] = (ret.a[i][j]+a[i][k]*arg.a[k][j])%P;
}
}
}
return ret;
}
Matrix inv()
{
Matrix ret = Matrix(n); for(int i=1; i<=n; i++) ret.a[i][i] = 1ll;
for(int i=1; i<=n; i++)
{
if(a[i][i]==0)
{
bool found = false;
for(int j=i+1; j<=n; j++)
{
if(a[j][i])
{
for(int k=1; k<=n; k++) {swap(a[i][k],a[j][k]),swap(ret.a[i][k],ret.a[j][k]);}
found = true; break;
}
}
if(found==false) {ret.a[0][0] = P; return ret;}
}
for(int j=i+1; j<=n; j++)
{
llong coe = (P-a[j][i]*mulinv(a[i][i])%P)%P;
for(int k=1; k<=n; k++)
{
a[j][k] = (a[j][k]+coe*a[i][k])%P;
ret.a[j][k] = (ret.a[j][k]+coe*ret.a[i][k])%P;
}
}
}
for(int i=1; i<=n; i++)
{
llong coe = mulinv(a[i][i]);
for(int j=1; j<=n; j++) {a[i][j] = a[i][j]*coe%P; ret.a[i][j] = ret.a[i][j]*coe%P;}
}
// write();
// ret.write();
for(int i=n; i>=1; i--)
{
for(int j=n; j>=i+1; j--)
{
llong coe = (P-a[i][j]*mulinv(a[j][j])%P)%P;
a[i][j] = 0ll;
for(int k=1; k<=n; k++) ret.a[i][k] = (ret.a[i][k]+coe*ret.a[j][k])%P;
}
}
return ret;
}
} a,b,aux,c;
int g[N+3][N+3];
int vis[N+3];
int match1[N+3],match2[N+3];
int n;
bool dfs1(int u)
{
for(int i=1; i<=n; i++)
{
if(g[i][u]==true && vis[i]==false)
{
vis[i] = true;
if(match2[i]==0 || dfs1(match2[i])==true)
{
match2[i] = u; match1[u] = i;
return true;
}
}
}
return false;
}
bool dfs2(int u,int u0)
{
for(int i=1; i<=n; i++)
{
if(g[i][u]==true && vis[i]==false)
{
vis[i] = true;
if(match2[i]==u0 || (match2[i]>u0 && dfs2(match2[i],u0)==true))
{
match2[i] = u; match1[u] = i;
return true;
}
}
}
return false;
}
int main()
{
scanf("%d",&n);
a.read(n); b.read(n);
aux = a.inv();
if(aux.a[0][0]==P) {printf("NIE"); return 0;}
c = b*aux;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++) g[i][j] = c.a[i][j]==0 ? 0 : 1;
}
// for(int i=1; i<=n; i++) {for(int j=1; j<=n; j++) printf("%d",g[i][j]); puts("");}
int mf = 0;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++) vis[j] = false;
mf += dfs1(i);
}
if(mf<n) {printf("NIE"); return 0;}
printf("TAK\n");
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++) vis[j] = false;
dfs2(i,i);
}
for(int i=1; i<=n; i++) printf("%d\n",match1[i]);
return 0;
}