题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2127
题解: 这道题就是传说中的“解方程”法。(貌似也有类似于BZOJ 3894的做法,但是边数比较多。)
以下设\(A_i\)为\(i\)选文的收益,\(B_i\)为\(i\)选理的收益,\(AA_{i,j}\)表示\(i,j\)同文的收益,\(BB_{i,j}\)表示\(i,j\)同理的收益。
首先对于每个点\(i\), 从\(S\)向\(i\)连\(A_i\),从\(i\)向\(T\)连\(B_i\)这个没有问题。
然后考虑处理同文同理的代价。
考虑\(S,T,i,j\)共\(4\)个点之间可以连\(6\)条边,设\(S\)到\(i\), \(i\)到\(T\), \(S\)到\(j\), \(j\)到\(T\), \(i\)到\(j\), \(j\)到\(i\)的容量分别为\(a,b,c,d,e,f\).
枚举\(i,j\)选文理的四种情况可以列出四个方程。
若\(i\in S, j\in S\), 则割掉的边是\(b\)和\(d\), 代价是两人不可同理(science)(注意单人文理的代价已经在刚才算过了,所以不要再算!)可得\(b+d=BB_{i,j}\), 同理(reason)可得\(a+c=AA_{i,j}\).
若\(i\in S, j\in T\), 则割掉的边是\(b,c,e\) (一定注意没有\(f\)), 代价是二人不可同文或同理(science), 可得\(b+c+e=AA_{i,j}+BB_{i,j}\), 同理(reason)可得\(a+d+f=AA_{i,j}+BB_{i,j}\).
这样我们列出了\(4\)个方程,给\(6\)个变量复制绰绰有余,可以随便取值。但是注意也不能太随便,比如不能出负数等等。一种比较好的取法是: $$a=c=\frac{AA_{i,j}}{2},b=d=\frac{BB_{i,j}}{2},e=f=\frac{AA_{i,j}+BB_{i,j}}{2}$$
最后合并起点终点均相同的边来减少边数,除以\(2\)可以先乘\(2\)再把答案除以\(2\)处理,避免出现小数。
好神仙啊……
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF = 4e8;
namespace MaxFlow
{
const int N = 1e4+2;
const int M = 6e4;
struct Edge
{
int v,w,nxt,rev;
} e[(M<<1)+3];
int fe[N+3],te[N+3];
int que[N+3];
int dep[N+3];
int n,en,s,t;
void addedge(int u,int v,int w)
{
en++; e[en].v = v; e[en].w = w;
e[en].nxt = fe[u]; fe[u] = en; e[en].rev = en+1;
en++; e[en].v = u; e[en].w = 0;
e[en].nxt = fe[v]; fe[v] = en; e[en].rev = en-1;
}
bool bfs()
{
for(int i=1; i<=n; i++) dep[i] = 0;
int head = 1,tail = 1; que[tail] = s; dep[s] = 1;
while(head<=tail)
{
int u = que[head]; head++;
for(int i=fe[u]; i; i=e[i].nxt)
{
if(dep[e[i].v]==0 && e[i].w>0)
{
dep[e[i].v] = dep[u]+1;
tail++; que[tail] = e[i].v;
}
}
}
return dep[t]!=0;
}
int dfs(int u,int cur)
{
if(u==t) return cur;
int rst = cur;
for(int i=te[u]; i; i=e[i].nxt)
{
if(dep[e[i].v]==dep[u]+1 && rst>0 && e[i].w>0)
{
int flow = dfs(e[i].v,min(rst,e[i].w));
if(flow>0)
{
e[i].w -= flow; e[e[i].rev].w += flow; rst -= flow;
if(e[i].w>0) te[u] = i;
if(rst==0) return cur;
}
}
}
if(rst==cur) dep[u] = 0;
return cur-rst;
}
int dinic(int _n,int _s,int _t)
{
n = _n,s = _s,t = _t;
int ret = 0;
while(bfs())
{
for(int i=1; i<=n; i++) te[i] = fe[i];
ret += dfs(s,INF);
}
return ret;
}
}
using MaxFlow::addedge;
using MaxFlow::dinic;
const int N = 100;
int a[N+3][N+3];
int b[N+3][N+3];
int aa1[N+3][N+3];
int aa2[N+3][N+3];
int bb1[N+3][N+3];
int bb2[N+3][N+3];
int n,m;
int getid(int x,int y) {return (x-1)*m+y+2;}
int main()
{
scanf("%d%d",&n,&m); int ans = 0;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++) scanf("%d",&a[i][j]),ans += a[i][j];
}
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++) scanf("%d",&b[i][j]),ans += b[i][j];
}
for(int i=1; i<n; i++)
{
for(int j=1; j<=m; j++) scanf("%d",&aa1[i][j]),ans += aa1[i][j];
}
for(int i=1; i<n; i++)
{
for(int j=1; j<=m; j++) scanf("%d",&bb1[i][j]),ans += bb1[i][j];
}
for(int i=1; i<=n; i++)
{
for(int j=1; j<m; j++) scanf("%d",&aa2[i][j]),ans += aa2[i][j];
}
for(int i=1; i<=n; i++)
{
for(int j=1; j<m; j++) scanf("%d",&bb2[i][j]),ans += bb2[i][j];
}
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
int x = getid(i,j);
addedge(1,x,(a[i][j]<<1)+aa1[i][j]+aa1[i-1][j]+aa2[i][j]+aa2[i][j-1]);
addedge(x,2,(b[i][j]<<1)+bb1[i][j]+bb1[i-1][j]+bb2[i][j]+bb2[i][j-1]);
if(i<n)
{
int y = getid(i+1,j);
addedge(x,y,aa1[i][j]+bb1[i][j]);
addedge(y,x,aa1[i][j]+bb1[i][j]);
}
if(j<m)
{
int y = getid(i,j+1);
addedge(x,y,aa2[i][j]+bb2[i][j]);
addedge(y,x,aa2[i][j]+bb2[i][j]);
}
}
}
int tmp = dinic(n*m+2,1,2);
ans -= (tmp>>1);
printf("%d\n",ans);
return 0;
}