使用MapReduce运行自定义bean案例
如果一个文件的内容不只是简单的单词,而是类似于一个对象那般,有多种属性值,如:
在这个文件中,每一行的内容分别代表:手机号、IP、访问网站、上行流量、下行流量、状态码,现在需要统计每个手机号访问网站的上行流量、下行流量以及它们的总和。由于mapper按照每行进行切片,不妨创建一个bean,封装这些属性。
FlowBean.java
public class FlowBean implements Writable{
private long upFlow;//上行流量
private long downFlow;//下行流量
private long sumFlow;//流量总和
public FlowBean() {
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
// 序列化 在写出属性时,如果为引用数据类型,属性不能为null
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
//反序列化 序列化和反序列化的顺序要一致
@Override
public void readFields(DataInput in) throws IOException {
upFlow=in.readLong();
downFlow=in.readLong();
sumFlow=in.readLong();
}
@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}
}
FlowBeanMapper.java
/*
* 1. 统计手机号(String)的上行(long,int),下行(long,int),总流量(long,int)
*
* 手机号为key,Bean{上行(long,int),下行(long,int),总流量(long,int)}为value
*/
public class FlowBeanMapper extends Mapper<LongWritable, Text, Text, FlowBean>{
private Text out_key=new Text();
private FlowBean out_value=new FlowBean();
// (0,1 13736230513 192.196.100.1 www.baidu.com 2481 24681 200)
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBean>.Context context)
throws IOException, InterruptedException {
String[] words = value.toString().split("\t");
//封装手机号
out_key.set(words[1]);
// 封装上行
out_value.setUpFlow(Long.parseLong(words[words.length-3]));
// 封装下行
out_value.setDownFlow(Long.parseLong(words[words.length-2]));
//写出
context.write(out_key, out_value);
}
}
FlowBeanReducer.java
public class FlowBeanReducer extends Reducer<Text, FlowBean, Text, FlowBean>{
private FlowBean out_value=new FlowBean();
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context)
throws IOException, InterruptedException {
long sumUpFlow=0;
long sumDownFlow=0;
for (FlowBean flowBean : values) {
sumUpFlow+=flowBean.getUpFlow();
sumDownFlow+=flowBean.getDownFlow();
}
out_value.setUpFlow(sumUpFlow);
out_value.setDownFlow(sumDownFlow);
out_value.setSumFlow(sumDownFlow+sumUpFlow);
context.write(key, out_value);
}
}
FlowBeanDriver.java
public class FlowBeanDriver {
public static void main(String[] args) throws Exception {
Path inputPath=new Path("e:/mrinput/flowbean");
Path outputPath=new Path("e:/mroutput/flowbean");
//作为整个Job的配置
Configuration conf = new Configuration();
FileSystem fs=FileSystem.get(conf);
if (fs.exists(outputPath)) {
fs.delete(outputPath, true);//保证输出目录不存在
}
// ①创建Job
Job job = Job.getInstance(conf);
// ②设置Job
// 设置Job运行的Mapper,Reducer类型,Mapper,Reducer输出的key-value类型
job.setMapperClass(FlowBeanMapper.class);
job.setReducerClass(FlowBeanReducer.class);
// Job需要根据Mapper和Reducer输出的Key-value类型准备序列化器,通过序列化器对输出的key-value进行序列化和反序列化
// 如果Mapper和Reducer输出的Key-value类型一致,直接设置Job最终的输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
// 设置输入目录和输出目录
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
// ③运行Job
job.waitForCompletion(true);
}
}
统计结果:
如果真的不知道做什么 那就做好眼前的事情吧 你所希望的事情都会慢慢实现...