数据结构--希尔排序和快速排序
1 /*希尔排序:对插入排序的改进,其排序是按照一个增量序列来进行 2 *增量序列的个数就是排序的趟数。在任意增量K下,保证a[i]<=a[i+k] 3 *该算法的效率和增量需序列的选择有很大关系。 4 *增量序列一般规则:h = 3h + 1; 5 *希尔排序的效率总体比简单排序的好。 6 * */ 7 public class ShellSort { 8 9 public static void main(String[] args) { 10 int[] list = {6,9,2,3,5,50,30,8,7,4,23,12}; 11 displayList(list); 12 shellSort(list); 13 displayList(list); 14 } 15 16 public static void shellSort(int[] arr){ 17 int inner,outer; 18 int temp; 19 int h = 1; 20 while(h <= arr.length / 3){ 21 h = h * 3 + 1; 22 } 23 //外循环控制排序趟数 24 while(h > 0){ 25 //控制每个增量的循环 26 for(outer = h; outer < arr.length; outer++){ 27 temp = arr[outer]; 28 inner = outer; 29 30 while(inner > h - 1 && arr[inner - h] >= temp){ 31 arr[inner] = arr[inner - h]; 32 inner = inner - h; 33 } 34 arr[inner] = temp; 35 } 36 h = (h - 1) / 3; 37 } 38 } 39 40 public static void displayList(int[] arr){ 41 for(int i = 0; i < arr.length;i++){ 42 System.out.print(arr[i] + " "); 43 } 44 System.out.println(); 45 } 46 47 }
1 /*快速排序:将一个数组划分为两个子数组,递归调用自身为每个子数组进行快速排序。 2 * 注意:确定好递归终止条件right - left <= 0 3 * 每次划分组:是根据划分的思想确定出下次组的边界 4 *2.划分思想:按照序列中的某个值将序列划分为两部分,右边值全部小于该值左边的部分全部大于该值, 5 *该值的选择尽量接近该组序列的平均值.通过在设置两个指针,分别从相反的方向找到比中间值大的 6 *和比中间值小的,交换,最后将中间值放在其位置上。 7 *3.快速排序:通常来说是效率比较好的排序算法O(NlogN) 8 *4.中枢值选择关键,最好两边长度差不多比较好,假如两边差的多,将导致多的一边过多的划分 9 * 效率降低,序列无序度高效果会好点--对于随机选择的中枢值 10 * */ 11 public class QuickSort { 12 13 public static void main(String[] args) { 14 int[] list = {3,2,5,7,5,38,20,18,27,39,12}; 15 displayList(list); 16 quickSort(list); 17 displayList(list); 18 } 19 20 public static void quickSort(int[] arr){ 21 recQuickSort(0,arr.length-1,arr); 22 } 23 24 private static void recQuickSort(int left, int right,int[] arr) { 25 if(right - left <= 0){//size<=1.递归基准条件 26 return; 27 } 28 else{ 29 int pivot = arr[right]; 30 //整理一次小的在一边大的在一边,并获得下次分组的边界 31 int partition = partitionIt(left,right,pivot,arr); 32 recQuickSort(left, partition - 1, arr); 33 recQuickSort(partition + 1, right, arr); 34 } 35 36 } 37 38 public static int partitionIt(int left,int right,int pivot,int[] arr){ 39 int lefter = left - 1; //第一个元素的左边 40 int righter = right; //最后一个元素 41 42 while(true){ 43 while(arr[++lefter] < pivot);//左边直到找到比中间值大的一个元素 44 45 while(righter > 0 && arr[--righter] > pivot);//右边直到找到比中间值小的一个元素 46 47 if(lefter >= righter){ 48 break; 49 } 50 else{ 51 swap(lefter,righter,arr); //交换两个元素 52 } 53 } 54 swap(lefter,right,arr); //将选定的中间值放其位置上 55 return lefter; 56 57 } 58 59 private static void swap(int lefter, int righter,int[] list) { 60 int temp = list[lefter]; 61 list[lefter] = list[righter]; 62 list[righter] = temp; 63 } 64 65 public static void displayList(int[] arr){ 66 for(int i = 0; i < arr.length;i++){ 67 System.out.print(arr[i] + " "); 68 } 69 System.out.println(); 70 } 71 72 }