ElasticSearch-聚合、自动补全、集群、数据同步

数据聚合

1、数据聚合

聚合(aggregations可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?

  • 这些手机的平均价格、最高价格、最低价格?

  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

2、聚合的种类

聚合常见的有三类:

  • 桶(Bucket)聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组

    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组

  • 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值

    • Max:求最大值

    • Min:求最小值

    • Stats:同时求max、min、avg、sum等

  • 管道(pipeline)聚合:其它聚合的结果为基础做聚合

 

注意:参加聚合的字段必须是keyword、日期、数值、布尔类型

3、DSL实现聚合

一、Bucket聚合语法

语法如下:

GET /hotel/_search
{
  "size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果
  "aggs": { // 定义聚合
    "brandAgg": { //给聚合起个名字
      "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
        "field": "brand", // 参与聚合的字段
        "size": 20 // 希望获取的聚合结果数量
      }
    }
  }
}

 结果:

 

 二、聚合排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为count,并且按照count降序排序。

我们可以指定order属性,自定义聚合的排序方式:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc" // 按照_count升序排列
        },
        "size": 20
      }
    }
  }
}

三、限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 // 只对200元以下的文档聚合
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

四、Metric聚合

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}

结果:

4、总结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称

  • 聚合类型

  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量

  • order:指定聚合结果排序方式

  • field:指定聚合字段

4、RestAPI实现聚合

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法:

 

 聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

测试代码:

 @Test
    public void terms() throws IOException {
        // 1 构建查询请求
        SearchRequest request = new SearchRequest("hotel");
        // 2 构造DSL
        request.source().size(0);
        request.source().aggregation(AggregationBuilders
                .terms("brandAggs")
                .field("brand")
                .size(10)
        );
        // 3 发起查询,获取响应
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4 解析响应
        Aggregations aggregations = response.getAggregations();
        Terms terms = aggregations.get("brandAggs");
        List<? extends Terms.Bucket> buckets = terms.getBuckets();
        for (Terms.Bucket bucket : buckets) {
            System.out.println(bucket.getKeyAsString()+"-"+bucket.getDocCount());
        }
    }

 

自动补全

1、拼音分词器

拼音分词器下载路径:https://www.aliyundrive.com/s/cQ8BsrS13nN

 

测试:

POST /_analyze
{
  "text": "如家酒店还不错",
  "analyzer": "pinyin"
}

2、自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

 

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符

  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart

  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

 

文档分词时会依次由这三部分来处理文档:

 

 声明自定义分词器的语法如下:

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { // 自定义分词器
        "my_analyzer": {  // 分词器名称
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { // 自定义tokenizer filter
        "py": { // 过滤器名称
          "type": "pinyin", // 过滤器类型,这里是pinyin
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

测试:

 

 

总结:

如何使用拼音分词器?

  • ①下载pinyin分词器

  • ②解压并放到elasticsearch的plugin目录

  • ③重启即可

如何自定义分词器?

  • ①创建索引库时,在settings中配置,可以包含三部分

  • ②character filter

  • ③tokenizer

  • ④filter

拼音分词器注意事项?

  • 为了避免搜索到同音字,搜索时不要使用拼音分词器

3、自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。

  • 字段的内容一般是用来补全的多个词条形成的数组。

比如,一个这样的索引库:

// 创建索引库
PUT test
{
  "mappings": {
    "properties": {
      "title":{
        "type": "completion"
      }
    }
  }
}

然后插入下面的数据:

// 示例数据
POST test/_doc
{
  "title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
  "title": ["SK-II", "PITERA"]
}
POST test/_doc
{
  "title": ["Nintendo", "switch"]
}

查询的DSL语句如下:

// 自动补全查询
GET /test/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s", // 关键字
      "completion": {
        "field": "title", // 补全查询的字段
        "skip_duplicates": true// 跳过重复的
        "size": 10 // 获取前10条结果
      }
    }
  }
}

4、自动补全的JavaAPI

之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:

 

 而自动补全的结果也比较特殊,解析的代码如下:


 

数据同步

常见的数据同步方案有三种:

  • 同步调用
  • 异步通知
  • 监听binlog

 

方案一:同步调用

 

基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据

  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

  •  

 

方案二:异步通知

 

 

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息

  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

方案三:监听binlog

 

 

 

流程如下:

  • 给mysql开启binlog功能

  • mysql完成增、删、改操作都会记录在binlog中

  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

 

 

方式一:同步调用

  • 优点:实现简单,粗暴

  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般

  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合

  • 缺点:开启binlog增加数据库负担、实现复杂度高

 1、MQ方式实现数据同步

 

 详细过程:https://www.aliyundrive.com/s/ZqvwHS8BMJM


 

集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点

  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • 节点(node) :集群中的一个 Elasticearch 实例

  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

 

 此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

 

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点

  • 然后对每个分片进行备份,放到对方节点,完成互相备份

1、集群搭建

参考:https://www.aliyundrive.com/s/nkgG16k6RqU

2、集群的脑裂问题

一、集群的职责划分

elasticsearch中集群节点有不同的职责划分:

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

 

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第

  • data节点:对CPU和内存要求都高

  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

 

 

 

二、脑裂问题

脑裂是因为集群中的节点失联导致的。

 

失联导致集群中的master节点在新产生集群中重新选举主节点,当故障或网络等异常情况恢复后,出现同一集群出现多个主节点的现象。

 

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

总结:

master eligible节点的作用是什么?

  • 参与集群选主

  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点

  • 合并查询到的结果,返回给用户

2、集群的分布式存储

一、分片存储的原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

说明:

  • _routing默认是文档的id

  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

 

新增文档的流程如下:

解读:

  • 1)新增一个id=1的文档

  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2

  • 3)shard-2的主分片在node3节点,将数据路由到node3

  • 4)保存文档

  • 5)同步给shard-2的副本replica-2,在node2节点

  • 6)返回结果给coordinating-node节点

 

二、集群的分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

 

 三、集群的故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

 

 现在,node1是主节点,其它两个节点是从节点。

 

2)突然,node1发生了故障:

 

 宕机后的第一件事,需要重新选主,例如选中了node2:

 

 node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:

 

 

 

posted @ 2021-12-23 15:29  佛祖让我来巡山  阅读(727)  评论(0编辑  收藏  举报

佛祖让我来巡山博客站 - 创建于 2018-08-15

开发工程师个人站,内容主要是网站开发方面的技术文章,大部分来自学习或工作,部分来源于网络,希望对大家有所帮助。

Bootstrap中文网