BZOJ_1004_[HNOI2008]Cards_burnside+DP

BZOJ_1004_[HNOI2008]Cards_burnside+DP

Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG

和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。


burnside告诉我们,对于这种计数问题,只需要把不动点方案数加起来取个平均值就可以了。

于是考虑对于一个洗牌排列我们怎么求不动点。

首先每个环上的牌颜色肯定一样,拿出来做个大DP就完了。

 

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
typedef long long ll;
int Sr,Sb,Sg,n,m,mod;
int a[80],f[80][22][22],cnt,vis[80],sz[80],sum[80];
void exgcd(int a,int b,int &x,int &y,int &d) {if(!b) {d=a; x=1; y=0; return ;}exgcd(b,a%b,y,x,d); y-=a/b*x;}
int INV(int a) {int x,y,d; exgcd(a,mod,x,y,d); return (x%mod+mod)%mod;}
void gv(int &x,int y) { x=(x+y)%mod; }
int main() {
    scanf("%d%d%d%d%d",&Sr,&Sb,&Sg,&m,&mod); m++;
    n=Sr+Sb+Sg;
    int i,j,k,l,ans=0;
    for(i=1;i<=m;i++) {
        if(i!=m) for(j=1;j<=n;j++) scanf("%d",&a[j]);
        else for(j=1;j<=n;j++) a[j]=j;
        memset(vis,0,sizeof(vis)); cnt=0;
        for(j=1;j<=n;j++) if(!vis[j]) { vis[j]=1;
            for(sz[++cnt]=1,k=j;a[k]!=j;k=a[k],vis[k]=1) sz[cnt]++; sum[cnt]=sum[cnt-1]+sz[cnt];
        }
        memset(f,0,sizeof(f)); f[0][0][0]=1;
        for(j=1;j<=cnt;j++) for(k=0;k<=sum[j]&&k<=Sr;k++) for(l=0;k+l<=sum[j]&&l<=Sb;l++) {
            if(k>=sz[j]) gv(f[j][k][l],f[j-1][k-sz[j]][l]);
            if(l>=sz[j]) gv(f[j][k][l],f[j-1][k][l-sz[j]]);
            if(sum[j]-k-l>=sz[j]) gv(f[j][k][l],f[j-1][k][l]);
        }
        gv(ans,f[cnt][Sr][Sb]);
    }
    printf("%lld\n",ll(ans)*INV(m)%mod);
}

 

posted @ 2018-08-05 19:46  fcwww  阅读(140)  评论(0编辑  收藏  举报