BZOJ_5311_贞鱼_决策单调性+带权二分

BZOJ_5311_贞鱼_决策单调性+带权二分

Description

众所周知,贞鱼是一种高智商水生动物。不过他们到了陆地上智商会减半。
这不?他们遇到了大麻烦!
n只贞鱼到陆地上乘车,现在有k辆汽车可以租用。
由于贞鱼们并不能在陆地上自由行走,一辆车只能载一段连续的贞鱼。
贞鱼们互相有着深深的怨念,每一对贞鱼之间有怨气值。
第i只贞鱼与第j只贞鱼的怨气值记为Yij,且Yij=Yji,Yii=0。
每辆车载重不限,但是每一对在同辆车中的贞鱼都会产生怨气值。
当然,超级贞鱼zzp长者希望怨气值的总和最小。
不过他智商已经减半,想不出分配方案。
他现在找到了你,请你帮助他分配贞鱼们,并输出最小怨气值之和ans。

Input

第一行两个整数:n,k。
接下来读入一个n行n列的矩阵。矩阵中第i行j列的元素表示Yij
当然这个矩阵是对称的。

Output

一个整数ans,表示:最小的怨气值之和
★注意:同辆车中,贞鱼i,j之间的怨气只算一次!
1 ≤ n ≤4000 ,1 ≤ k ≤min(n , 800) , 0 ≤ Yij≤10 

Sample Input

8 3
0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0

Sample Output

7
编号为1,2,3的贞鱼一辆车:怨气值和为3;
编号为4,5,6的贞鱼一辆车:怨气值和为3;
编号为7,8的贞鱼一辆车:怨气值和为1。
最小怨气值总和为 3 + 3 + 1 = 7 。

考虑二分一个权值,表示这辆车的价钱为C。
如果C=0,就会选出n辆车。
如果C=inf,就会只用一辆车。
为什么是凸的可以感性理解一下。
于是用这个权值逼近,直到选出刚好K辆车。此时选择的方案一定为最优解的一种方案。
然后考虑没有限制怎么搞。
F[i]=F[j]+(s[i][i]+s[j][j]-s[i][j]*2)/2+C。
可以证明这个转移满足决策单调性。(懒得证了)
然后直接单调队列+二分维护序列染色即可。
 
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
inline char nc() {
    static char buf[100000],*p1,*p2;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int rd() {
    int x=0; char ch=nc();
    while(ch<'0'||ch>'9') ch=nc();
    while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=nc();
    return x;
}
#define N 4050
int n,K,s[N][N],f[N],g[N],C;
int Y(int j,int i) {
    return f[j]+(s[j][j]+s[i][i]-s[i][j]*2)/2+C;
}
struct A {
    int l,r,p;
}Q[N];
int find(const A &a,int x) {
    int l=a.l,r=a.r+1;
    while(l<r) {
        int mid=(l+r)>>1;
        if(Y(x,mid)>Y(a.p,mid)) l=mid+1;
        else r=mid;
    }
    return l;
}
void check() {
    int i;
    int l=0,r=0;
    f[0]=0; g[0]=0;
    Q[r++]=(A){0,n,0};
    for(i=1;i<=n;i++) {
        while(l<r&&Q[l].r<i) l++;
        f[i]=Y(Q[l].p,i); g[i]=g[Q[l].p]+1;
        if(Y(i,n)<=Y(Q[r-1].p,n)) {
            while(l<r&&Y(i,Q[r-1].l)<=Y(Q[r-1].p,Q[r-1].l)) r--;
            if(l==r) Q[r++]=(A){i,n,i};
            else {
                int x=find(Q[r-1],i);
                Q[r-1].r=x-1;
                Q[r++]=(A){x,n,i};
            }
        }
    }
}
int main() {
    n=rd(); K=rd();
    register int i,j;
    for(i=1;i<=n;i++) {
        for(j=1;j<=n;j++) {
            s[i][j]=rd();
            s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];
        }
    }
    int l=0,r=10000;
    while(l<r) {
        C=(l+r)>>1;
        check();
        if(g[n]>K) l=C+1;
        else r=C;
    }
    l--;
    C=l; check();
    printf("%d\n",f[n]-K*l);
}

 

posted @ 2018-06-24 14:10  fcwww  阅读(720)  评论(3编辑  收藏  举报