BZOJ_2844_albus就是要第一个出场_线性基
BZOJ_2844_albus就是要第一个出场_线性基
Description
已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子
集构成的集合。定义映射 f : 2^S -> Zf(空集) = 0f(T) = XOR A[t] , 对于一切t属于T现在albus把2^S中每个集
合的f值计算出来, 从小到大排成一行, 记为序列B(下标从1开始)。 给定一个数, 那么这个数在序列B中第1
次出现时的下标是多少呢?
Input
第一行一个数n, 为序列A的长度。接下来一行n个数, 为序列A, 用空格隔开。最后一个数Q, 为给定的数.
Output
共一行, 一个整数, 为Q在序列B中第一次出现时的下标模10086的值.
Sample Input
3
1 2 3
1
1 2 3
1
Sample Output
3
样例解释:
N = 3, A = [1 2 3]
S = {1, 2, 3}
2^S = {空, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
f(空) = 0
f({1}) = 1
f({2}) = 2
f({3}) = 3
f({1, 2}) = 1 xor 2 = 3
f({1, 3}) = 1 xor 3 = 2
f({2, 3}) = 2 xor 3 = 1
f({1, 2, 3}) = 0
所以
B = [0, 0, 1, 1, 2, 2, 3, 3]
样例解释:
N = 3, A = [1 2 3]
S = {1, 2, 3}
2^S = {空, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
f(空) = 0
f({1}) = 1
f({2}) = 2
f({3}) = 3
f({1, 2}) = 1 xor 2 = 3
f({1, 3}) = 1 xor 3 = 2
f({2, 3}) = 2 xor 3 = 1
f({1, 2, 3}) = 0
所以
B = [0, 0, 1, 1, 2, 2, 3, 3]
HINT
数据范围:
1 <= N <= 10,0000
其他所有输入均不超过10^9
基本思路是求出有几个小于这个数且本质不同的数。
如果构成线性基的数有K个,那么每种方案都可以找出$2^{n-K}$个。
然后我们可以正着求第K大异或和,也可以很巧妙的解决这个数是第几大的异或和。
由于这$2^{K}$个异或和与他们的排名是一一对应的,我们可以这样做。
把线性基中所有第一位的1抠出来,假设现在有个数x,将x拆成二进制的形式,在线性基中的第i位是1就相当于有1<<i个比他小的,需要加上。
其实就是反过来做,求反过来的第K大异或和,只不过此时的线性基是第i个向量恰好在第i位为1。
代码:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int mod=10086; int qp(int x,int y) { int re=1; for(;y;y>>=1,x=x*x%mod) if(y&1) re=re*x%mod; return re; } int n,b[40],a[40]; void insert(int x) { int i; for(i=30;i>=0;i--) { if(x&(1<<i)) { if(b[i]) x^=b[i]; else { b[i]=x; return ; } } } } void Guass() { int i,j; for(i=30;i>=0;i--) { if(b[i]) { for(j=30;j>=0;j--) { if(i!=j&&(b[j]&(1<<j))) b[j]^=b[i]; } } } } int main() { scanf("%d",&n); int i,x; for(i=1;i<=n;i++) scanf("%d",&x),insert(x); Guass(); int Q; scanf("%d",&Q); int k=0; for(i=0;i<=30;i++) if(b[i]) a[++k]=i; int re=0; for(i=1;i<=k;i++) { if(Q&(1<<(a[i]))) { re=(re+(1<<(i-1)))%mod; } } printf("%d\n",(re*qp(2,n-k)%mod+1)%mod); }