BZOJ_4726_[POI2017]Sabota?_树形DP

BZOJ_4726_[POI2017]Sabota?_树形DP

Description

某个公司有n个人, 上下级关系构成了一个有根树。其中有个人是叛徒(这个人不知道是谁)。对于一个人, 如果他
下属(直接或者间接, 不包括他自己)中叛徒占的比例超过x,那么这个人也会变成叛徒,并且他的所有下属都会变
成叛徒。你要求出一个最小的x,使得最坏情况下,叛徒的个数不会超过k。

Input

第一行包含两个正整数n,k(1<=k<=n<=500000)。
接下来n-1行,第i行包含一个正整数p[i+1],表示i+1的父亲是p[i+1](1<=p[i+1]<=i)。

Output

输出一行一个实数x,误差在10^-6以内都被认为是正确的。

Sample Input

9 3
1
1
2
2
2
3
7
3

Sample Output

0.6666666667

HINT

答案中的x实际上是一个无限趋近于2/3但是小于2/3的数

 

因为当x取2/3时,最坏情况下3,7,8,9都是叛徒,超过了k=3。
 

树形DP。
设f[i]为i的子树没有完全变成叛徒的最小的x值。
显然对于每个叶子节点f[i]=1,实际上是一个无限趋近于1但是大于1的数。
每棵子树叛变,需要保证子树叛变且子树大小占比例超过x,于是我们对f[y]和siz[y]/siz[x]取min,再在儿子里面取一个最大的。
最后直接在所有siz大于等于k的子树中找出f值最大的。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 500050
typedef double du;
du f[N];
int head[N],to[N<<1],nxt[N<<1],cnt;
int n,siz[N];
inline void add(int u,int v) {
    to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;   
}
void dfs(int x,int y) {
    int i;
    siz[x]=1;
    int flg=0;
    for(i=head[x];i;i=nxt[i])if(to[i]!=y) {
        flg=1;
        dfs(to[i],x);
        siz[x]+=siz[to[i]]; 
    }
    for(i=head[x];i;i=nxt[i])if(to[i]!=y) {
        f[x]=max(f[x],min(f[to[i]],1.0*siz[to[i]]/(siz[x]-1))); 
    }
    if(!flg) f[x]=1;
}
int main() {
    int k;
    scanf("%d%d",&n,&k);
    int i,x;
    for(i=2;i<=n;i++) {
        scanf("%d",&x);
        add(i,x);add(x,i);
    }
    dfs(1,0);
    du ans=0;
    for(i=1;i<=n;i++) if(siz[i]>k) ans=max(ans,f[i]);
    printf("%.9lf",ans);
}

 

posted @ 2018-04-07 19:54  fcwww  阅读(144)  评论(0编辑  收藏  举报