有什么岁月静好,不过是有人替你负重前行!哪

Python之时间模块、random模块、json与pickle模块

一、时间模块

1、常用时间模块

复制代码
import time
# 时间分为三种格式
#1、时间戳---------------------以秒计算
# start= time.time()
# time.sleep(3)
# stop= time.time()
# print(stop - start)

#2、格式化的字符串形式------------格式化的时间格式是字符串形式的
print(time.strftime('%Y-%m-%d %X'))
print(time.strftime('%Y-%m-%d %H:%M:%S %p'))

#3、 结构化的时间/时间对象-------------结构化的时间格式,
t1=time.localtime()          #与世界标准时间超前8个小时
print(t1)                    #time.struct_time(tm_year=2018, tm_mon=6, tm_mday=20, tm_hour=19, tm_min=53, tm_sec=42, tm_wday=2, tm_yday=171, tm_isdst=0)
# print(type(t1.tm_min))
# print(t1.tm_mday)  #通过对象里的属性可以直接进行取值

t2=time.gmtime()            #世界标准时间
# print(t1)
print(t2)                   #time.struct_time(tm_year=2018, tm_mon=6, tm_mday=20, tm_hour=11, tm_min=53, tm_sec=42, tm_wday=2, tm_yday=171, tm_isdst=0)
print(t2.tm_hour)
复制代码

 

2、时间转换

 

复制代码
# 时间转换
# print(time.localtime(123123123))
# print(time.gmtime(123123123))

# print(time.mktime(time.localtime()))

# print(time.strftime('%Y',time.localtime()))
# print(time.strptime('2011-03-07','%Y-%d-%m'))


# print(time.asctime())
# print(time.ctime())
# print(time.strftime('%a %b %d %H:%M:%S %Y'))

# print(time.asctime(time.localtime()))
# print(time.ctime(123123123))

# print(time.strftime('%Y-%m-%d %X'))




# 获取格式化字符串形式的时间麻烦
# 时间戳与格式化时间之间的转换麻烦
# 获取之前或者未来的时间麻烦
解决以上问题见下文
复制代码

 

3、datetime模块

复制代码
import datetime

# print(datetime.datetime.now())
# print(datetime.datetime.fromtimestamp(1231233213))

# print(datetime.datetime.now() + datetime.timedelta(days=3))
# print(datetime.datetime.now() + datetime.timedelta(days=-3))


# s=datetime.datetime.now()
# print(s.replace(year=2020))
复制代码

 二、random模块

 

复制代码
import random

# print(random.random())                    #只能随机取0到1之间的小数
# print(random.randint(1,3))                #随机取1或2或3中的一个
# print(random.randrange(1,3))              #顾头不顾尾,随机取1或2中的一个
print(random.choice([1,'egon',[1,2]]))      #随机从列表中取一个
# print(random.sample([1, 'aa', [4, 5]], 2))#随机从列表中任意取两个,可以指定随机取的个数

# print(random.uniform(1,3))                #可以指定随机取的小数的区间

# item=['a','b','c','d']
# random.shuffle(item)                      #打乱重新进行洗牌
# print(item)
复制代码

 

三、json与pickle模块

基本概念

 

复制代码
01 什么是序列化/反序列化
    序列化就是将内存中的数据结构转换成一种中间格式存储到硬盘或者基于网络传输
    发序列化就是硬盘中或者网络中传来的一种数据格式转换成内存中数据结构

02 为什要有
    1、可以保存程序的运行状态
    2、数据的跨平台交互

03 怎么用
    json
        优点:
            跨平台性强
        缺点:
            只能支持/对应python部分的数据类型

    pickle
        优点:
            可以支持/对应所有python的数据类型
        缺点:
            只能被python识别,不能跨平台
复制代码

 

 

 

1、json的注意点

 

复制代码
# json格式不能识别单引号,全都是双引号

import json

with open('db1.json','rt',encoding='utf-8') as f:
    json.load(f)

json.loads('{"name":"egon"}')

import json
print(json.loads("{'name':'egon'}"))  #会报错,json文件里不存在单引号。反序列化对象里面不能有单引号

with open('db.json','wt',encoding='utf-8') as f:
    l=[1,True,None]
    json.dump(l,f)

# 用json反序列化---------------------load或loads
with open('db.json','rt',encoding='utf-8') as f:
    l=json.load(f)
    print(l)

# 用eval反序列化:eval只是单纯的将文件里的字符串运行变成对应的数据类型,而不会把json文件里卖弄的true,null转换成True,None
with open('db.json','rt',encoding='utf-8') as f:
    s=f.read() #s ='[1, true, null]'
    dic=eval(s) #eval('[1, true, null]')
    print(dic['name'])
复制代码

 

 

 

2、json的反序列化

复制代码
import json
dic={'name':'egon','age':18,'sex':'male'}
#反序列化:中间格式json-----》内存中的数据类型

#1、从文件中读取json_str
with open('db.json','rt',encoding='utf-8') as f:
    json_str=f.read()
#2、将json_str转成内存中的数据类型-------------------反序列化:loads
dic=json.loads(json_str)  # loads的对象必须是字符串

#1和2可以合作一步
with open('db.json','rt',encoding='utf-8') as f:
    dic=json.load(f) # 文件对象

print(dic['sex'])
复制代码

 

3、json的序列化

 

复制代码
import json

dic={'name':'egon','age':18,'sex':'male'}
#序列化:内存中的数据类型------>中间格式json

# 1、序列化得到json_str 序列化以后的数据类型就变成字符串-------------序列化:dumps
json_str=json.dumps(dic)
# 2、把json_str写入文件
with open('db.json','wt',encoding='utf-8') as f:
    f.write(json_str)

#1和2合为一步
with open('db.json','wt',encoding='utf-8') as f:
    json.dump(dic,f)  # 序列化对象 目标文件


print(json_str,type(json_str)) # json格式不能识别单引号,全都是双引号
复制代码

 

 

 

4、pickle的反序列化

 

复制代码
import pickle


# #1、从文件中读取pickle格式
with open('egon.json','rb') as f:
    pkl=f.read()
#2、将json_str转成内存中的数据类型---------------反序列化:loads
dic=pickle.loads(pkl)
print(dic['a'])

#1和2可以合作一步
with open('db.pkl','rb') as f:
    dic=pickle.load(f)

print(dic['a'])

# pickle 的序列化
import json,pickle

s={1,2,3}
# json.dumps(s)------------------序列化:dumps
pickle.dumps(s)

import pickle


dic={'a':1,'b':2,'c':3}

# 1 序列化
pkl=pickle.dumps(dic)  # 字典序列化后变成字节,不是字符串------------序列化:dumps
print(pkl,type(pkl))
# #2 写入文件
with open('db.pkl','wb') as f:  # 对应的写入文件就应该是wb模式写入
    f.write(pkl)

# 1和2可以合作一步
with open('db.pkl','wb') as f:
    pickle.dump(dic,f)
复制代码

 

 

 

5、pickle的序列化

 

复制代码
import pickle

dic={'a':1,'b':2,'c':3}

#1 序列化
pkl=pickle.dumps(dic)
# print(pkl,type(pkl))

#2 写入文件
with open('db.pkl','wb') as f:
    f.write(pkl)

# 1和2可以合作一步
with open('db.pkl','wb') as f:
    pickle.dump(dic,f)
复制代码

 

posted @   迎风而来  阅读(411)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?
/*吸附球*/
点击右上角即可分享
微信分享提示

喜欢请打赏

扫描二维码打赏

了解更多