范式建模和维度建模的区别
不同点
- 首先最大的不同就是企业数据仓库的模式不同,inmon是采用第三范式的格式,而kimball则采用了多维模型–星型模型,并且还是最低粒度的数据存储。
- 其次是,维度数据仓库可以被分析系统直接访问,当然这种访问方式毕竟在分析过程中很少使用。最后就是数据集市的概念有逻辑上的区别,在kimball的架构中,数据集市有维度数据仓库的高亮显示的表的子集来表示。有的时候,在kimball的架构中,有一个可变通的设计,就是在ETL的过程中加入ODS层,使得ODS层中能保留第三范式的一组表来作为ETL过程的过度。但是这个思想,Kimball看来只是ETL的过程辅助而已。
- 最后维度建模自底向上,范式建模自顶向下
相同点
Kimball和Inmon是两种主流的数据仓库方法论,分别由 Ralph Kimbal大神 和 Bill Inmon大神提出,在实际数据仓库建设中,业界往往会相互借鉴使用两种开发模式,这两种的相同点如下:
- 都是假设操作型系统和分析型系统是分离的;
- 数据源(操作型系统)都是众多;
- ETL整合了多种操作型系统的信息,集中到一个企业数据仓库。
范式建模
- Inmon提出的集线器的自上而下(EDW-DM)的数据仓库架构。操作型或事务型系统的数据源,通过ETL抽取转换和加载到数据仓库的ODS层,然后通过ODS的数据建设原子数据的数据仓库EDW,EDW不是多维格式的,不方便上层应用做数据分析,所以需要通过汇总建设成多维格式的数据集市层。优势:易于维护,高度集成;劣势:结构死板,部署周期较长
- 一个符合第三范式的关系必须具有以下三个条件:
- 1. 每个属性的值唯一,不具有多义性;
- 2. 每个非主属性必须完全依赖于整个主键,而非主键的一部分;
- 3. 每个非主属性不能依赖于其他关系中的属性,因为这样的话,这种属性应该归到其他关系中去。
但是由于EDW的数据是原子粒度的,数据量比较大,完全规范的3范式在数据的交互的时候效率比较低下,所以通常会根据实际情况在事实表上做一些冗余,减少过多的数据交互。
维度建模
- Kimball提出的总线式的自下而上(DM-DW)的数据仓库架构。同样的,操作型或事务型系统的数据源,通过ETL抽取转换和加载到数据仓库的ODS层,然后通过ODS的数据,利用维度建模方法建设一致维度的数据集市。通过一致性维度可以将数据集市联系在一起,由所有的数据集市组成数据仓库。优势:构建迅速,最快的看到投资回报率,敏捷灵活;劣势:作为企业资源不太好维护,结构复杂,数据集市集成困难。
作者:苏su
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY