强联通总结
noip前两天开始学这玩意…………
强连通(模版 元问题byscy)
模板题,我感觉不难。
另外可以用来缩点,在开一个邻接表,不再在一个强联通分量的连边就好。
#include<bits/stdc++.h> #define REP(i, a, b) for(register int i = (a); i < (b); i++) #define _for(i, a, b) for(register int i = (a); i <= (b); i++) using namespace std; const int MAXN = 2e4 + 10; const int MAXM = 2e5 + 10; struct Edge{ int to, next; } e[MAXM]; int head[MAXN], tot, n, m; int low[MAXN], dfn[MAXN], id; int belong[MAXN], ins[MAXN], cnt; int sta[MAXN], top; void AddEdge(int from, int to) { e[tot] = Edge{to, head[from]}; head[from] = tot++; } void tarjan(int u) { low[u] = dfn[u] = ++id; sta[++top] = u; ins[u] = 1; for(int i = head[u]; ~i; i = e[i].next) { int v = e[i].to; if(!dfn[v]) { tarjan(v); low[u] = min(low[u], low[v]); } else if(ins[v]) low[u] = min(low[u], low[v]); } if(dfn[u] == low[u]) { ++cnt; while(1) { int v = sta[top--]; ins[v] = 0; belong[v] = cnt; if(u == v) break; } } } int main() { memset(head, -1, sizeof(head)); tot = 0; scanf("%d%d", &n, &m); _for(i, 1, m) { int u, v; scanf("%d%d", &u, &v); AddEdge(u, v); } _for(i, 1, n) if(!dfn[i]) tarjan(i); printf("%d\n", cnt); return 0; }
强连通入门2:添加最少边成为强连通图
看题的时候感觉是一个公式
但是想复杂了,1h推出一个错误的结论……
这样想,如果是强联通图,肯定每个点的出度和入度都至少为1
那么我们把出度和入度为0的点消灭就好了
一条边可以消灭一个入度为0的点和1个出度为0的点
设s1为入度为0的点,s2为出度为0的点
那么用min(s1, s2)条边连接入度为0的点和出度为0的点
然后用max(s1, s2) - min(s1, s2)条边消灭剩下的点
所以答案是max(s1, s2)
#include<bits/stdc++.h> #define REP(i, a, b) for(register int i = (a); i < (b); i++) #define _for(i, a, b) for(register int i = (a); i <= (b); i++) using namespace std; const int MAXN = 2e4 + 10; const int MAXM = 2e5 + 10; struct Edge{ int to, next; } e[MAXM]; int head[MAXN], tot; int dfn[MAXN], low[MAXN], id; int sta[MAXN], ins[MAXN], top; int belong[MAXN], n, m, cnt; int in[MAXN], out[MAXN]; void AddEdge(int from, int to) { e[tot] = Edge{to, head[from]}; head[from] = tot++; } void tarjan(int u) { dfn[u] = low[u] = ++id; sta[++top] = u; ins[u] = 1; for(int i = head[u]; ~i; i = e[i].next) { int v = e[i].to; if(!dfn[v]) { tarjan(v); low[u] = min(low[u], low[v]); } else if(ins[v]) low[u] = min(low[u], low[v]); } if(dfn[u] == low[u]) { cnt++; while(1) { int v = sta[top--]; ins[v] = 0; belong[v] = cnt; if(u == v) break; } } } void init() { tot = cnt = id = top = 0; memset(head, -1, sizeof(head)); memset(dfn, 0, sizeof(dfn)); memset(low, 0, sizeof(low)); memset(ins, 0, sizeof(ins)); memset(in, 0, sizeof(in)); memset(out, 0, sizeof(out)); } int main() { int T; scanf("%d", &T); while(T--) { init(); scanf("%d%d", &n, &m); _for(i, 1, m) { int u, v; scanf("%d%d", &u, &v); AddEdge(u, v); } _for(i, 1, n) if(!dfn[i]) tarjan(i); _for(u, 1, n) for(int i = head[u]; ~i; i = e[i].next) { int v = e[i].to; int uu = belong[u], vv = belong[v]; //新的点 if(uu == vv) continue; out[uu]++; in[vv]++; } if(cnt == 1) { puts("0"); continue; } //特判 int ans1 = 0, ans2 = 0; _for(i, 1, cnt) { ans1 += (in[i] == 0); ans2 += (out[i] == 0); } printf("%d\n", max(ans1, ans2)); } return 0; }
强连通入门4:The Bottom of a Graph
一开始以为看这个点出去的点和自己是不是连通分量就好了
然后一直WA
然后发现这个点能达到的点不只这个点出去的点……这样做是错的……
答案应该是缩点后出度为0的连通分量的所有点
#include<bits/stdc++.h> #define REP(i, a, b) for(register int i = (a); i < (b); i++) #define _for(i, a, b) for(register int i = (a); i <= (b); i++) using namespace std; const int MAXN = 5e3 + 10; struct Edge{ int to, next; }; vector<Edge> e; int head[MAXN], tot; int n, m; int sta[MAXN], ins[MAXN], belong[MAXN], top; int dfn[MAXN], low[MAXN], out[MAXN], id, cnt; void AddEdge(int from, int to) { e.push_back(Edge{to, head[from]}); head[from] = tot++; } void init() { tot = id = top = cnt = 0; e.clear(); memset(head, -1, sizeof(head)); memset(dfn, 0, sizeof(dfn)); memset(low, 0, sizeof(low)); memset(ins, 0, sizeof(ins)); memset(out, 0, sizeof(out)); } void tarjan(int u) { dfn[u] = low[u] = ++id; sta[++top] = u; ins[u] = 1; for(int i = head[u]; ~i; i = e[i].next) { int v = e[i].to; if(!dfn[v]) { tarjan(v); low[u] = min(low[u], low[v]); } else if(ins[v]) low[u] = min(low[u], low[v]); } if(dfn[u] == low[u]) { ++cnt; while(1) { int v = sta[top--]; ins[v] = 0; belong[v] = cnt; if(u == v) break; } } } int main() { while(~scanf("%d", &n) && n) { init(); scanf("%d", &m); _for(i, 1, m) { int u, v; scanf("%d%d", &u, &v); AddEdge(u, v); } _for(i, 1, n) if(!dfn[i]) tarjan(i); _for(u, 1, n) for(int i = head[u]; ~i; i = e[i].next) { int v = e[i].to; int uu = belong[u], vv = belong[v]; if(uu != vv) out[uu]++; } int first = 1; set<int> ans; _for(i, 1, cnt) if(!out[i]) ans.insert(i); _for(i, 1, n) if(ans.count(belong[i])) { if(first) first = 0; else putchar(' '); printf("%d", i); } puts(""); } return 0; }
还差两道题,待补……