紫书 例题8-13 UVa 11093 (反证法)

这道题发现一个性质就解决了

如果以i为起点, 然后一直加油耗油, 到p这个地方要去p+1的时候没油了, 那么i, i+1, ……一直到p, 如果以这些点

为起点, 肯定也走不完。

为什么呢?

用反证法, 假设以q(i  < q <= p)这个点为起点可以走完的话, 那么i这个点也一定可以走完

首先, i是可以达到q的, 因为i可以达到p, 而q是在p前面的, 而且从i开始走到q这个点剩下的油量肯定大于等于0,

而如果单纯从q开始走的话, 油量会等于0, 也就是说从i过来所有的油量反而会更多, 更容易走完

所以完全可以从i走到q, 再从q走完。

所以如果从i不能走完的话, 那么它经过的点就肯定不能走完了。

#include<cstdio>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;

const int MAXN = 112345;
int a[MAXN], n;

bool judge(int& pos)
{
	int num = 0, sum = 0;
	while(num < n && (sum += a[pos]) >= 0) num++, pos = (pos + 1) % n;
	return num == n;
}

int main()
{
	int T, kase = 0, x;
	scanf("%d", &T);
	
	while(T--)
	{
		scanf("%d", &n);
		REP(i, 0, n) scanf("%d", &a[i]);
		REP(i, 0, n) scanf("%d", &x), a[i] -= x;
		
		int start = 0, pos = 0, ok = true;
		while(!judge(pos)) 
		{
			pos = (pos + 1) % n; //注意这里要+1, 能走到的最远的点一样要舍掉。 
			if(pos <= start) { ok = false; break;}
			start = pos;
		}
		
		if(ok) printf("Case %d: Possible from station %d\n", ++kase, start + 1);
		else printf("Case %d: Not possible\n", ++kase);
	}
	
	return 0;	
} 


posted @ 2018-04-30 17:56  Sugewud  阅读(145)  评论(0编辑  收藏  举报