网络流最大流模板
EK算法
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#include<queue>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 212;
struct Edge
{
int from, to, cap, flow;
Edge(int from = 0,int to = 0,int cap = 0,int flow = 0):from(from),to(to),cap(cap),flow(flow){}
};
vector<Edge> edges;
vector<int> g[MAXN];
int p[MAXN], a[MAXN], n, m; //p数组用来找到路径而修改流量的,a数组是从起点可以有的流量
void AddEdge(int from, int to, int cap)
{
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
g[from].push_back(edges.size() - 2);
g[to].push_back(edges.size() - 1);
}
int maxflow(int s, int t)
{
int flow = 0;
while(1)
{
memset(a, 0, sizeof(a));
queue<int> q;
q.push(s);
a[s] = 1e9; //初始有无限流量
while(!q.empty())
{
int x = q.front(); q.pop();
REP(i, 0, g[x].size())
{
Edge& e = edges[g[x][i]];
if(!a[e.to] && e.cap > e.flow) //没有访问过且还可以增加流量
{
p[e.to] = g[x][i]; //储存路径
a[e.to] = min(a[x], e.cap - e.flow); //注意这里取min,本身的限制已经可以达到的流量
q.push(e.to);
}
}
if(a[t]) break;
}
if(!a[t]) break;
flow += a[t];
for(int u = t; u != s; u = edges[p[u]].from)
{
edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t]; //反向边流量减少,后面可以后悔, 精华在这
}
}
return flow;
}
int main()
{
scanf("%d%d", &m, &n);
while(m--)
{
int from, to, cap;
scanf("%d%d%d", &from, &to, &cap);
AddEdge(from, to, cap);
}
printf("%d\n", maxflow(1, n));
return 0;
}
Dinic算法
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#include<queue>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 212;
struct Edge
{
int from, to, cap, flow;
Edge(int from = 0,int to = 0,int cap = 0,int flow = 0):from(from),to(to),cap(cap),flow(flow){}
};
vector<Edge> edges;
vector<int> g[MAXN];
int h[MAXN], cur[MAXN];
int n, m, s, t;
void AddEdge(int from, int to, int cap)
{
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
g[from].push_back(edges.size() - 2);
g[to].push_back(edges.size() - 1);
}
bool bfs()
{
memset(h, 0, sizeof(h));
queue<int> q;
q.push(s);
h[s] = 1;
while(!q.empty())
{
int x = q.front(); q.pop();
REP(i, 0, g[x].size())
{
Edge& e = edges[g[x][i]];
if(!h[e.to] && e.cap > e.flow) //记住考虑的是残量网络内的图
{
h[e.to] = h[x] + 1;
q.push(e.to);
}
}
}
return h[t];
}
int dfs(int x, int a)
{
if(x == t || a == 0) return a;
int flow = 0, f;
for(int& i = cur[x]; i < g[x].size(); i++) //牛逼的优化,从上次考虑的弧开始做, 每次i++, cur[x]也++
{
Edge& e = edges[g[x][i]];
if(h[x] + 1 == h[e.to] && (f = dfs(e.to, min(e.cap - e.flow, a))) > 0)
{
e.flow += f;
edges[g[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int main()
{
scanf("%d%d", &m, &n);
s = 1; t = n;
while(m--)
{
int from, to, cap;
scanf("%d%d%d", &from, &to, &cap);
AddEdge(from, to, cap);
}
int ans = 0;
while(bfs()) memset(cur, 0, sizeof(cur)), ans += dfs(s, 1e9);
printf("%d\n", ans);
return 0;
}