caioj 1074 动态规划入门(中链式1:最小交换合并问题)
经典的石子合并问题!!!
设f[i][j]为从i到j的最大值
然后我们先枚举区间大小,然后枚举起点终点来更新
f[i][j] = min(f[i][k] + f[k+1][j] + sum(i, j));
最后f[1][n]就是答案!!
#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 212;
int f[MAXN][MAXN], a[MAXN], s[MAXN], n;
int main()
{
int ans = 1e9;
scanf("%d", &n);
REP(i, 1, n + 1) scanf("%d", &a[i]);
REP(r, 1, n)
{
swap(a[r], a[r + 1]);
REP(i, 1, n + 1) s[i] = s[i-1] + a[i];
swap(a[r], a[r + 1]);
REP(d, 2, n + 1)
for(int st = 1; st + d - 1 <= n; st++)
{
int i = st, j = st + d - 1;
f[i][j] = 1e9;
REP(k, i, j)
f[i][j] = min(f[i][j], f[i][k] + f[k+1][j] + (s[j] - s[i-1]));
}
ans = min(ans, f[1][n]);
}
printf("%d\n", ans);
return 0;
}