Kantorovich 不等式

[T240301] 证明 Kantorovich 不等式: 设 \(f\in R[0,1]\), 且 \(0<m\le f(x)\le M\), 则有

\[\int_0^1f(x)\mathrm {~d}x\int_0^1\frac{1}{f(x)}\mathrm{~d}x\le\frac{(m+M)^2}{4mM}. \]

     注意到

\[\frac{\left[f(x)-m\right]\left[f(x)-M\right]}{f(x)}\le0\Longrightarrow f(x)+\frac{mM}{f(x)}\le m+M \]

两边积分

\[\int_0^1f(x)\mathrm{~d}x+\int_0^1\frac{mM}{f(x)}\mathrm{~d}x\le m+M \]

又由均值不等式可知

\[\begin{aligned} \int_0^1f(x)\mathrm {~d}x\int_0^1\frac{1}{f(x)}\mathrm{~d}x&=\frac{1}{mM}\int_0^1f(x)\mathrm {~d}x\int_0^1\frac{mM}{f(x)}\mathrm{~d}x\\ &\le\frac{1}{mM}\left(\frac{\int_0^1f(x)\mathrm{~d}x+\int_0^1\frac{mM}{f(x)}\mathrm{~d}x}{2}\right)^2\\ &\le\frac{(m+M)^2}{4mM}. \quad\quad \# \end{aligned} \]

posted @ 2024-03-01 11:26  只会加减乘除  阅读(132)  评论(0编辑  收藏  举报