微积分续期末练习
期末练习
-
D
-
C
解:\(f(x)=\frac{x-x^3}{\sin\pi x}\),则 \(f(x)\) 的定义域为 \(\mathbb{R}-\mathbb{Z}\),因此 \(x\in 0,\pm1,\pm2,\cdots\) 都是 \(f(x)\) 的间断点,其中 \(x=0,\pm1\) 为可去间断点,因为\[\begin{aligned} &\lim\limits_{x\to0}\frac{x-x^3}{\sin \pi x}=\lim\limits_{x\to0}\frac{x-x^3}{\pi x}=\frac{1}{\pi}\\ &\lim\limits_{x\to1}\frac{x-x^3}{\sin \pi x}=\lim\limits_{x\to1}\frac{1-3x^2}{\pi \cos\pi x}=\frac{2}{\pi}\\ &\lim\limits_{x\to-1}\frac{x-x^3}{\sin \pi x}=\lim\limits_{x\to-1}\frac{1-3x^2}{\pi \cos\pi x}=\frac{2}{\pi}\\ \end{aligned} \]而其余点均为第二类间断点,因为函数极限不存在.
-
B
解:
\[\begin{aligned} \lim\limits_{x\to0}\frac{f(a+x)-f(a-x)}{x}&=\lim\limits_{x\to0}\frac{f(a+x)-f(a)}{x}+\frac{f(a)-f(a-x)}{x}\\ &=\lim\limits_{x\to0}\frac{f(a+x)-f(a)}{x} +\lim\limits_{x\to0}\frac{f(a)-f(a-x)}{x}\\ &=2f'(a) \end{aligned} \] -
C
解:\(f(x)=|x|^3\Rightarrow f'(x)=3x|x|\Rightarrow f''(x)=6|x|\),因此
\[f'''_+(0)=\lim\limits_{x\to0}\frac{6x-0}{x}=6,\\ f'''_-(0)=\lim\limits_{x\to0}\frac{-6x-0}{x}=-6, \]\(f''_+(0)\neq f'''_-(0)\),因此 \(f'''(0)\) 不存在.
-
B
解:\(f'(x_0)=\frac{1}{2}\),即 \(\frac{\mathrm{~d}y}{\mathrm{~d}x}\bigg|_{x=x_0}=\frac{1}{2}\Rightarrow \mathrm{~d}y=\frac{1}{2}\mathrm{~d}x\Rightarrow \mathrm{~d}y=\frac{1}{2}\Delta x\Rightarrow\lim\limits_{\Delta x\to 0}\frac{\mathrm{~d}y}{\Delta x}=\lim\limits_{\Delta x\to 0}\frac{\frac{1}{2}\Delta x}{\Delta x}=\frac{1}{2}\)
-
解:\(x(\frac{10}{x}-1)<x[\frac{10}{x}]<10\Rightarrow \lim\limits_{x\to0}x[\frac{10}{x}]=10.\)
-
解:
\[\lim\limits_{(x,y)\to(0,0)}\frac{x^2+y^2}{\sqrt{1+x^2+y^2}-1}=\lim\limits_{(x,y)\to(0,0)}\sqrt{1+x^2+y^2}+1=2. \] -
解:\(z=(x+e^y)^x:=u^v, \ u=x+e^y,v=x\),故
\[\begin{aligned} \frac{\partial z}{\partial x}&=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}=vu^{v-1}+u^v\ln u\\ &=x(x+e^y)^{x-1}+(x+e^y)^x\ln(x+e^y)\\ \Rightarrow \frac{\partial z}{\partial x}\bigg|_{(1,0)}&=1+2\ln 2. \end{aligned} \] -
解:
\[\begin{aligned} &y'+y=e^{-x}\cos x\Rightarrow e^x(y'+y)=\cos x\Rightarrow (e^xy)'=\cos x\Rightarrow \\ &e^xy=\sin x+C,y(0)=0\Rightarrow C=0\Rightarrow y=\frac{\sin x}{e^x}. \end{aligned} \] -
解:
\[\begin{aligned} \lim\limits_{n\to\infty}\frac{(1+\frac{1}{n})^{n^2}}{e^n}&=\exp\left\{\lim\limits_{n\to\infty}\left[n^2\ln(1+\frac{1}{n})-n\right]\right\}\\ (令x=\frac{1}{n})\quad&=\exp\left\{\lim\limits_{x\to0}\frac{\ln(1+x)-x}{x^2}\right\}\\ 洛&=\exp\left\{\lim\limits_{x\to0}\frac{-1}{2+2x}\right\}\\ &=e^{-1/2}. \end{aligned} \] -
解:\(x=\int_0^t e^{-s^2}\mathrm{~d}s,\quad y=\int_0^t\sin(t-s)^2\mathrm{~d}s=\int_0^t\sin u^2\mathrm{~d}u\),故
\[\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}t}/\frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\sin t^2}{e^{-t^2}}\\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2}=\frac{\mathrm{d}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\mathrm{d}x}=\frac{\mathrm{d}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t}=2te^{2t^2}(\cos t^2+\sin t^2). \] -
解:利用轮换对称性,\(\iint_D(\sin x+\cos y)^2\mathrm{~d}\sigma=\iint_D(\sin y+\cos x)^2\mathrm{~d}\sigma\),于是
\[\begin{aligned} 2I&=\iint_D(\sin x+\cos y)^2+(\sin y+\cos x)^2\mathrm{~d}\sigma\\ &=\iint_D2+2\sin(x+y)\mathrm{~d}\sigma\\ &=\iint_D2\mathrm{~d}\sigma+2\iint_D\sin(x+y)\mathrm{~d}\sigma\\ &=2\pi+2\iint_D\sin x\cos y\mathrm{~d}\sigma+2\iint_D\cos x\sin y\mathrm{~d}\sigma\\ (轮换对称性)&=2\pi+4\iint_D\sin x\cos y\mathrm{~d}\sigma\\ (对称性)&=2\pi \end{aligned} \]故原二重积分 \(I=\pi.\)
-
解:高中题,构造 \(f(x)=x\sin x+2\cos x+\pi x\),求导即可,最后 \(f(b)>f(a)\).
-
证:令
\[S_n(x)=\sum_{i=0}^{n}\frac{(-1)^i}{i+1}C_n^ix^{i+1} \]于是
\[S_n'(x)=\sum_{i=0}^nC_n^i(-x)^i=(1-x)^n \]因此
\[\begin{aligned} S_n(x)&=\int_0^x(1-t)^n\mathrm{~d}t=-\int_0^x(1-t)^n\mathrm{~d(1-t)}\\ &=-\frac{1}{n+1}(1-t)^{n+1}\bigg|_0^x=\frac{1}{n+1}-\frac{(1-x)^{n+1}}{n+1} \end{aligned} \]令 \(x=1\) 即可得
\[S_n(1)=C_n^0-\frac{1}{2}C_n^1+\frac{1}{3}C_n^2-\cdots+\frac{(-1)^n}{n+1}C_n^n=\frac{1}{n+1} \] -
解:
\[\begin{aligned} f(x)&=\ln(1+x+x^2+x^3+x^4)=\ln\frac{(1+x+x^2+x^3+x^4)(1-x)}{1-x}\\ &=\ln\frac{1-x^5}{1-x}=\ln(1-x^5)-\ln(1-x)\\ &=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}(-x^5)^n-\sum_{n=1}^{\infty}\frac{(-1)^n}{n}(-x)^n\\ &=-\sum_{n=1}^{\infty}\frac{x^{5n}}{n}-\sum_{n=1}^{\infty}\frac{x^n}{n},\quad x\in[-1,1) \end{aligned} \] -
证:因为 \(f''(x)>0\),所以 \(f(x)\) 在 \([a,b]\) 上为下凸函数,于是对 \(\forall x,x_0\in[a,b]\),有
\[f(x)\ge f(x_0)+f'(x_0)(x-x_0). \]取 \(x_0=\frac{a+b}{2}\),并在 \([a,b]\) 上积分,得
\[\begin{aligned} \int_a^bf(x)\mathrm{~d}x&\ge f(\frac{a+b}{2})(b-a)+f'(\frac{a+b}{2})\int_a^b(x-\frac{a+b}{2})\mathrm{~d}x\\ &=f(\frac{a+b}{2})(b-a) \end{aligned} \]即
\[f(\frac{a+b}{2})\le\frac{1}{b-a}\int_a^bf(x)\mathrm{~d}x. \]