AFLW如何获取你想要的21点人脸关键点数据
目前人脸检测和人脸的关键点的数据库根据关键点个数:5,20,21,29,68等。https://blog.csdn.net/XZZPPP/article/details/74939823该网页详细列出了相关数据集的网址。由于项目需要和评估数据集大小。我选择了21点的AFLW数据集。网上也有人将该数据放到百度网盘上,可以直接下载。由于数据放在.sqlite。可以通过可视化工具直接查看数据内容。https://www.jianshu.com/p/dfd6e0193460
也可以通过代码来查看:
import sqlite3 sqlite_path = "*/aflw.sqlite" conn = sqlite3.connect(sqlite_path) cur = conn.cursor() cur.execute("SELECT name FROM sqlite_master WHERE type='table'") Tables = cur.fetchall() for table in Tables: table_name = table[0] print(table_name) cur.execute("SELECT * FROM {}".format(table_name)) col_name_list = [tuple[0] for tuple in cur.description] print(col_name_list)
打印出来结果如下:
Faces ['face_id', 'file_id', 'db_id'] sqlite_sequence,FacePose,FaceImages,...,CamPose. ['name', 'seq'] FacePose ['face_id', 'roll', 'pitch', 'yaw', 'annot_type_id'] FaceImages ['image_id', 'db_id', 'file_id', 'filepath', 'bw', 'width', 'height'] Databases ['db_id', 'path', 'description'] FaceMetaData ['face_id', 'sex', 'occluded', 'glasses', 'bw', 'annot_type_id'] sqlite_stat1 ['tbl', 'idx', 'stat'] FaceRect ['face_id', 'x', 'y', 'w', 'h', 'annot_type_id'] AnnotationType ['annot_type_id', 'description', 'CODE'] FaceEllipse ['face_id', 'x', 'y', 'ra', 'rb', 'theta', 'annot_type_id', 'upsidedown'] NearDuplicates ['face_id'] FeatureCoords ['face_id', 'feature_id', 'x', 'y', 'annot_type_id'] FeatureCoordTypes ['feature_id', 'descr', 'code', 'x', 'y', 'z'] CamPose ['face_id', 'camRoll', 'camPitch', 'camYaw', 'annot_type_id']
现在你可以发现,其实aflw.sqlite就是将Faces,sqlite_sequence,FacePose,FaceImages,...,CamPose这些表合起来放在一起,再存在一个轻量级的数据库中。既然是表,那很自然的我就想到了用pandas来处理数据。因为这些数据需要按需求按face_id合并。
path = "*/aflw.sqlite" with sqlite3.connect(path) as con: df_Faces = pd.read_sql_query("SELECT face_id,file_id FROM Faces", con) df_sqlite_sequence = pd.read_sql_query("SELECT name,seq FROM sqlite_sequence", con) df_FacePose = pd.read_sql_query("SELECT face_id,roll,pitch,yaw,annot_type_id FROM FacePose", con) df_FaceImages = pd.read_sql_query("SELECT image_id, db_id, file_id, filepath, bw, width, height FROM FaceImages", con) df_Database = pd.read_sql_query("SELECT db_id,path,description FROM Databases", con) df_FaceMetaData = pd.read_sql_query("SELECT face_id, sex, occluded, glasses, bw, annot_type_id FROM FaceMetaData", con) df_sqlite_stat1 = pd.read_sql_query("SELECT tbl,idx,stat FROM sqlite_stat1", con) df_FaceRect = pd.read_sql_query("SELECT face_id,x,y,w,h,annot_type_id FROM FaceRect", con) df_AnnotationType = pd.read_sql_query("SELECT annot_type_id, description,CODE FROM AnnotationType", con) df_FaceEllipse = pd.read_sql_query("SELECT face_id,x,y,ra,rb,theta,annot_type_id,upsidedown FROM FaceEllipse", con) df_NearDuplicates = pd.read_sql_query("SELECT face_id FROM NearDuplicates", con) df_FeatureCoords = pd.read_sql_query("SELECT face_id,feature_id,x,y,annot_type_id FROM FeatureCoords", con) df_FeatureCoordTypes = pd.read_sql_query("SELECT feature_id,descr,code,x,y,z FROM FeatureCoordTypes", con)
就这样,我们可以得到所有的表。其中人脸框坐标在df_FaceRect中,21点人脸关键点坐标在df_FeatureCoords中。具体的数据意义,可以参考该数据集的论文:Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization。
下一步,就可以train自己的人脸关键点检测模型了。