CAS
有一个共享变量余额,多线程调用减余额方法 withdraw 减少这个共享的余额变量 balance
方法内会启动 1000 个线程,每个线程做 -10 元 的操作 * 如果初始余额为 10000 那么正确的结果应当是 0。结果却大于 0
加锁解决
class AccountUnsafe implements Account { private Integer balance;
public AccountUnsafe(Integer balance) { this.balance = balance; }
@Override public synchronized Integer getBalance() { return balance; }
@Override public synchronized void withdraw(Integer amount) { balance -= amount; } }
无锁 CAS
class AccountSafe implements Account {
private AtomicInteger balance;
public AccountSafe(Integer balance) { this.balance = new AtomicInteger(balance); }
@Override public Integer getBalance() { return balance.get(); }
@Override public void withdraw(Integer amount) { while (true) { int prev = balance.get(); int next = prev - amount; if (balance.compareAndSet(prev, next)) { break; } } // 可以简化为下面的方法 // balance.addAndGet(-1 * amount); } }
其中的关键是 compareAndSet,它的简称就是 CAS (也有 Compare And Swap 的说法),它必须是原子操作。
compareAndSet 正是做这个检查,在 set 前,先比较 prev 与当前值
- 不一致了,next 作废,返回 false 表示失败
- 比如,别的线程已经做了减法,当前值已经被减成了 990 那么本线程的这次 990 就作废了,进入 while 下次循环重试
- 一致,以 next 设置为新值,返回 true 表示成功
注意
其实 CAS 的底层是 lock cmpxchg 指令(X86 架构),在单核 CPU 和多核 CPU 下都能够保证【比较-交换】的原子性。
CAS 与 volatile
获取共享变量时,为了保证该变量的可见性,需要使用 volatile 修饰。
它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存。即一个线程对 volatile 变量的修改,对另一个线程可见。
注意 volatile 仅仅保证了共享变量的可见性,让其它线程能够看到最新值,但不能解决指令交错问题(不能保证原子性)
CAS 必须借助 volatile 才能读取到共享变量的最新值来实现【比较并交换】的效果
public class AtomicInteger extends Number implements java.io.Serializable { private static final long serialVersionUID = 6214790243416807050L; // setup to use Unsafe.compareAndSwapInt for updates private static final Unsafe unsafe = Unsafe.getUnsafe(); private static final long valueOffset; static { try { valueOffset = unsafe.objectFieldOffset (AtomicInteger.class.getDeclaredField("value")); } catch (Exception ex) { throw new Error(ex); } } private volatile int value; //......
为什么无锁效率高
- 无锁情况下,即使重试失败,线程始终在高速运行,没有停歇,而 synchronized 会让线程在没有获得锁的时候,发生上下文切换(java 线程调度由操作系统内核管理),进入阻塞。
- 但无锁情况下,因为线程要保持运行,需要额外 CPU 的支持,CPU 在这里就好比高速跑道,没有额外的跑道,线程想高速运行也无从谈起,虽然不会进入阻塞,但由于没有分到时间片,仍然会进入可运行状态,还是会导致上下文切换。(所以并发线程数不要超过 CPU 核心数。少于核心数的话,可以一直在运行态,不会因为没有分到时间片而上下文切换)
CAS 的特点
结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景下。
- CAS 是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再 重试呗。
- synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁,你们才有机会。
- CAS 体现的是无锁并发、无阻塞并发,请仔细体会这两句话的意思
- 因为没有使用 synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一
- 但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响
原子整数 - AtomicInteger
J.U.C 并发包提供了: AtomicBoolean AtomicInteger AtomicLong 。以 AtomicInteger 为例
AtomicInteger 里由比原始的 compareAndSet (需要配合 while(true)循环)封装得更为简洁的操作
getAndIncrement() 获取并自增1 getAndAdd(5) 获取并增加5
如果想要除加减法之外更复杂的操作,可以用 getAndUpdate(p->p*2),里面是一个 lambda 表达式
AtomicInteger i = new AtomicInteger(0); // 获取并自增(i = 0, 结果 i = 1, 返回 0),类似于 i++ System.out.println(i.getAndIncrement()); // 自增并获取(i = 1, 结果 i = 2, 返回 2),类似于 ++i System.out.println(i.incrementAndGet()); // 自减并获取(i = 2, 结果 i = 1, 返回 1),类似于 --i System.out.println(i.decrementAndGet()); // 获取并自减(i = 1, 结果 i = 0, 返回 1),类似于 i-- System.out.println(i.getAndDecrement()); // 获取并加值(i = 0, 结果 i = 5, 返回 0) System.out.println(i.getAndAdd(5)); // 加值并获取(i = 5, 结果 i = 0, 返回 0) System.out.println(i.addAndGet(-5)); // 获取并更新(i = 0, p 为 i 的当前值, 结果 i = -2, 返回 0) // 其中函数中的操作能保证原子,但函数需要无副作用 System.out.println(i.getAndUpdate(p -> p * 2)); // 更新并获取(i = -2, p 为 i 的当前值, 结果 i = 0, 返回 0) // 其中函数中的操作能保证原子,但函数需要无副作用 System.out.println(i.updateAndGet(p -> p + 2)); // 获取并计算(i = 0, p 为 i 的当前值, x 为参数1, 结果 i = 10, 返回 0) // 其中函数中的操作能保证原子,但函数需要无副作用 // getAndUpdate 如果在 lambda 中引用了外部的局部变量,要保证该局部变量是 final 的 // getAndAccumulate 可以通过 参数1 来引用外部的局部变量,但因为其不在 lambda 中因此不必是 final System.out.println(i.getAndAccumulate(10, (p, x) -> p + x)); // 计算并获取(i = 10, p 为 i 的当前值, x 为参数1, 结果 i = 0, 返回 0) // 其中函数中的操作能保证原子,但函数需要无副作用 System.out.println(i.accumulateAndGet(-10, (p, x) -> p + x));
getAndUpdate 和 updateAndGet 的内部实现如下面这段代码。其中 IntUnaryOperator 是 lambda 表达式的封装
可以看到就是对 compareAndSet while 循环 的封装。先 get 的话返回的是 prev 后 get 的话返回的是经过 IntUnaryOperator 计算后的 next 值
public final int getAndUpdate(IntUnaryOperator updateFunction) { int prev, next; do { prev = get(); next = updateFunction.applyAsInt(prev); } while (!compareAndSet(prev, next)); return prev; } public final int updateAndGet(IntUnaryOperator updateFunction) { int prev, next; do { prev = get(); next = updateFunction.applyAsInt(prev); } while (!compareAndSet(prev, next)); return next; }
原子引用
为什么需要原子引用类型? AtomicReference AtomicMarkableReference AtomicStampedReference
有如下方法,可以保证除了 Integer Long Boolean 之外如 BigDecimal 的原子性
class DecimalAccountSafeCas implements DecimalAccount {
AtomicReference<BigDecimal> ref;
public DecimalAccountSafeCas(BigDecimal balance) { ref = new AtomicReference<>(balance); }
@Override public BigDecimal getBalance() { return ref.get(); }
@Override public void withdraw(BigDecimal amount) { while (true) { BigDecimal prev = ref.get(); BigDecimal next = prev.subtract(amount); if (ref.compareAndSet(prev, next)) { break; } } } }
ABA 问题
如果一个变量被 从 A 改到了 B,后又改回了 A
而 CAS 操作,在 第一个 A 时获取到变量的 prev 值,在变量被改B又改回A后,才进行 CAS 操作,那么这个 CAS 操作会成功。
因为仅能判断出共享变量的值与最初值 A 是否相同,不能感知到这种从 A 改为 B 又 改回 A 的情况
如果希望: 只要有其它线程【动过了】共享变量,那么自己的 cas 就算失败,这时,仅比较值是不够的,需要再加一个版本号
AtomicStampedReference
AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如: A -> B -> A -> C ,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。
new AtomicStampedReference<>("A", 0); 0就是初始版本号
static AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0);
public static void main(String[] args) throws InterruptedException { log.debug("main start..."); // 获取值 A String prev = ref.getReference(); // 获取版本号 int stamp = ref.getStamp(); log.debug("版本 {}", stamp); // 被 other 里的改了,发生了 ABA 现象,于是 stamp 发生了变化 other(); sleep(1); // 尝试改为 C,这里就会失败,stamp 对不上。stamp + 1 是 CAS 成功后版本号会被更新为 stamp+1 log.debug("change A->C {}", ref.compareAndSet(prev, "C", stamp, stamp + 1)); }
private static void other() { new Thread(() -> { log.debug("change A->B {}", ref.compareAndSet(ref.getReference(), "B", ref.getStamp(), ref.getStamp() + 1)); log.debug("更新版本为 {}", ref.getStamp()); }, "t1").start();
sleep(0.5);
new Thread(() -> { log.debug("change B->A {}", ref.compareAndSet(ref.getReference(), "A", ref.getStamp(), ref.getStamp() + 1)); log.debug("更新版本为 {}", ref.getStamp()); }, "t2").start(); }
输出为
15:41:34.891 c.Test36 [main] - main start... 15:41:34.894 c.Test36 [main] - 版本 0 15:41:34.956 c.Test36 [t1] - change A->B true 15:41:34.956 c.Test36 [t1] - 更新版本为 1 15:41:35.457 c.Test36 [t2] - change B->A true 15:41:35.457 c.Test36 [t2] - 更新版本为 2 15:41:36.457 c.Test36 [main] - change A->C false
AtomicMarkableReference
AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如: A -> B -> A -> C ,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。
但是有时候,并不关心引用变量更改了几次,只是单纯的关心是否更改过,所以就有了 AtomicMarkableReference,不需要 int 类型的版本号记录是否被更改过,只需要一个 boolean 类型来记录是否被更改过。
场景:
- 初始时有一个满了的垃圾袋,即有一个 GarbageBag 的原子引用,初始状态为 true
- 主人获取垃圾袋后 sleep 了。在此期间保洁阿姨已经换掉了这个满了的(初始状态true)垃圾袋,CAS 更换后把垃圾袋的状态改为了 false(不满)
- 那么主人更换垃圾袋即 CAS 的时候就会先判断垃圾袋是否满(true),如果还是满的,才会真正更换。显然现在是不满的,不会更换。
@Slf4j public class TestABAAtomicMarkableReference { public static void main(String[] args) throws InterruptedException { GarbageBag bag = new GarbageBag("装满了垃圾"); // 参数2 mark 可以看作一个标记,表示垃圾袋满了 AtomicMarkableReference<GarbageBag> ref = new AtomicMarkableReference<>(bag, true); log.debug("主线程 start..."); GarbageBag prev = ref.getReference(); log.debug(prev.toString());
new Thread(() -> { log.debug("打扫卫生的线程 start..."); bag.setDesc("空垃圾袋"); while (!ref.compareAndSet(bag, bag, true, false)) {} log.debug(bag.toString()); }).start();
Thread.sleep(1000);
log.debug("主线程想换一只新垃圾袋?"); boolean success = ref.compareAndSet(prev, new GarbageBag("空垃圾袋"), true, false); log.debug("换了么?" + success); log.debug(ref.getReference().toString()); } }
原子数组
- AtomicIntegerArray
- AtomicLongArray
- AtomicReferenceArray
有如下方法
/** 参数1,提供数组、可以是线程不安全数组或线程安全数组 参数2,获取数组长度的方法 参数3,自增方法,回传 array, index 参数4,打印数组的方法 */ // supplier 提供者 无中生有 ()->结果 // function 函数 一个参数一个结果 (参数)->结果 , BiFunction (参数1,参数2)->结果 // consumer 消费者 一个参数没结果 (参数)->void, BiConsumer (参数1,参数2)-> private static <T> void demo( Supplier<T> arraySupplier, Function<T, Integer> lengthFun, BiConsumer<T, Integer> putConsumer, Consumer<T> printConsumer ) {
List<Thread> ts = new ArrayList<>(); T array = arraySupplier.get(); int length = lengthFun.apply(array); for (int i = 0; i < length; i++) { // 每个线程对数组作 10000 次操作。 ts.add(new Thread(() -> { for (int j = 0; j < 10000; j++) { putConsumer.accept(array, j%length); } })); } ts.forEach(t -> t.start()); // 启动所有线程 ts.forEach(t -> { try { t.join(); } catch (InterruptedException e) { e.printStackTrace(); } }); // 等所有线程结束 printConsumer.accept(array); }
不安全的数组
demo( ()->new int[10], (array)->array.length, (array, index) -> array[index]++, array-> System.out.println(Arrays.toString(array)) );
结果
[9870, 9862, 9774, 9697, 9683, 9678, 9679, 9668, 9680, 9698]
安全的数组
AtommicIntegerArray 的 getAndIncrement(index) 对数组某个下标的元素做自增操作时是线程安全的
demo( ()-> new AtomicIntegerArray(10), (array) -> array.length(), (array, index) -> array.getAndIncrement(index), array -> System.out.println(array) );
原子字段更新器
- AtomicReferenceFieldUpdater // 域 字段
- AtomicIntegerFieldUpdater
- AtomicLongFieldUpdater
利用字段更新器,可以针对对象的某个域(Field)进行原子操作,必须配合 volatile 修饰的字段使用,否则会抛出异常
public class Test5 {
private volatile int field;
public static void main(String[] args) { AtomicIntegerFieldUpdater fieldUpdater = AtomicIntegerFieldUpdater.newUpdater(Test5.class, "field"); Test5 test5 = new Test5(); fieldUpdater.compareAndSet(test5, 0, 10); // 修改成功 field = 10 System.out.println(test5.field); // 修改成功 field = 20 fieldUpdater.compareAndSet(test5, 10, 20); System.out.println(test5.field); // 修改失败 field = 20 fieldUpdater.compareAndSet(test5, 10, 30); System.out.println(test5.field); } }
原子累加器LongAdder
用 AtomicLong.getAndIncrement() 可以做累加,用 LongAdder.increment() 也可以做累加
但是 LongAdder 的性能比 AtomicLong 好很多
private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) { T adder = adderSupplier.get(); long start = System.nanoTime(); List<Thread> ts = new ArrayList<>(); // 4 个线程,每人累加 50 万 for (int i = 0; i < 40; i++) { ts.add(new Thread(() -> { for (int j = 0; j < 500000; j++) { action.accept(adder); } })); } ts.forEach(t -> t.start()); ts.forEach(t -> { try { t.join(); } catch (InterruptedException e) { e.printStackTrace(); } }); long end = System.nanoTime(); System.out.println(adder + " cost:" + (end - start)/1000_000); }
比较 AtomicLong 与 LongAdder
for (int i = 0; i < 5; i++) { demo(() -> new LongAdder(), adder -> adder.increment()); } for (int i = 0; i < 5; i++) { demo(() -> new AtomicLong(), adder -> adder.getAndIncrement()); }
输出
1000000 cost:43 1000000 cost:9 1000000 cost:7 1000000 cost:7 1000000 cost:7 1000000 cost:31 1000000 cost:27 1000000 cost:28 1000000 cost:24 1000000 cost:22
原理
- 性能提升的原因很简单,就是在有竞争时,设置多个累加单元,Therad-0 累加 Cell[0],而 Thread-1 累加 Cell[1]... 最后将结果汇总。这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性 能。
LongAdder 是并发大师 @author Doug Lea (大哥李)的作品,设计的非常精巧
LongAdder 类有几个关键域
// 累加单元数组, 懒惰初始化 transient volatile Cell[] cells; // 基础值, 如果没有竞争, 则用 cas 累加这个域 transient volatile long base; // 在 cells 创建或扩容时, 置为 1, 表示加锁 transient volatile int cellsBusy;
CAS 锁
前面 cells 创建或扩容时的锁 也是用 CAS 实现的锁,用 CAS 实现锁的方法:
cellsBusy 就是类似于下面这个 state 一样的锁标记
// 不要用于实践!!! public class LockCas { // 0 没加锁 // 1 加了锁 private AtomicInteger state = new AtomicInteger(0);
public void lock() { while (true) { // 如果只有一个线程,这个 CAS 可以成功,退出循环 // 如果两个线程同时来这里,线程1 CAS成功了,state变为1,那么线程2只能在这里循环等待 if (state.compareAndSet(0, 1)) { break; } } }
public void unlock() { log.debug("unlock..."); // 线程1解锁,设成0,线程2就可以退出那个循环了,相当于解锁成功 state.set(0); } }
什么是 CPU缓存行伪共享?及解决
其中 Cell 即为累加单元
// 防止缓存行伪共享 @sun.misc.Contended static final class Cell { volatile long value; Cell(long x) { value = x; } // 最重要的方法, 用来 cas 方式进行累加, prev 表示旧值, next 表示新值 final boolean cas(long prev, long next) { return UNSAFE.compareAndSwapLong(this, valueOffset, prev, next); } // 省略不重要代码 }
因为 CPU 与 内存的速度差异很大,需要靠预读数据至缓存来提升效率。
而缓存以缓存行为单位,每个缓存行对应着一块内存,一般是 64 byte(8 个 long)
缓存的加入会造成数据副本的产生,即同一份数据会缓存在不同核心的缓存行中
CPU 要保证数据的一致性,如果某个 CPU 核心更改了数据,其它 CPU 核心对应的整个缓存行必须失效
因为 Cell 是数组形式,在内存中是连续存储的,一个 Cell 为 24 字节(16 字节的对象头和 8 字节的 value),因此缓存行可以存下 2 个的 Cell 对象(图里画多了,两个 core 的这一行缓存行放下 cell[0] 加 cell[1] 这两个之后,还剩 64-24*2=16,没有那么多空白格)。
这样问题来了:
- Core-0 要修改 Cell[0]
- Core-1 要修改 Cell[1]
无论谁修改成功,都会导致对方 Core 的缓存行失效,比如 Core-0 中 Cell[0]=6000, Cell[1]=8000 要累加 Cell[0]=6001, Cell[1]=8000 ,这时会让 Core-1 的缓存行失效
@sun.misc.Contended 用来解决这个问题,它的原理是在使用此注解的对象或字段的前后各增加 128 字节大小的 padding,从而让 CPU 将对象预读至缓存时占用不同的缓存行,这样,不会造成对方缓存行的失效。
add 流程图
longAccumulate 流程图
每个线程刚进入 longAccumulate 时,会尝试对应一个 cell 对象(找到一个坑位)
获取最终结果通过 sum 方法
public long sum() { Cell[] as = cells; Cell a; long sum = base; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum; }
UnSafe
Unsafe 对象提供了非常底层的,操作内存、线程的方法,Unsafe 对象不能直接调用,只能通过反射获得(一个单例的私有对象)
CAS 以及 LockSupport 的 park unpark 方法,都是调用的 unSafe 对象的方法
UnSafe 不是指线程安全方面的 UnSafe ,而是指它涉及的操作比较底层,不建议程序员使用
获取 unSafe 对象
public class UnsafeAccessor { static Unsafe unsafe; static { try { Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe"); theUnsafe.setAccessible(true); unsafe = (Unsafe) theUnsafe.get(null); } catch (NoSuchFieldException | IllegalAccessException e) { throw new Error(e); } } static Unsafe getUnsafe() { return unsafe; } }
unSafe对象 - CAS 相关方法
@Data class Student { volatile int id; volatile String name; }
获取对象中域的偏移量
Unsafe unsafe = UnsafeAccessor.getUnsafe(); Field id = Student.class.getDeclaredField("id"); Field name = Student.class.getDeclaredField("name"); // 获得成员变量的偏移量 long idOffset = UnsafeAccessor.unsafe.objectFieldOffset(id); long nameOffset = UnsafeAccessor.unsafe.objectFieldOffset(name); Student student = new Student(); // 使用 cas 方法替换成员变量的值 UnsafeAccessor.unsafe.compareAndSwapInt(student, idOffset, 0, 20); // 返回 true UnsafeAccessor.unsafe.compareAndSwapObject(student, nameOffset, null, "张三"); // 返回 true System.out.println(student);
unSafe对象 - 模拟实现原子整数
使用自定义的 AtomicData 实现之前线程安全的原子整数 Account 实现
class AtomicData { private volatile int data; static final Unsafe unsafe; static final long DATA_OFFSET;
static { unsafe = UnsafeAccessor.getUnsafe(); try { // data 属性在 DataContainer 对象中的偏移量,用于 Unsafe 直接访问该属性 DATA_OFFSET = unsafe.objectFieldOffset(AtomicData.class.getDeclaredField("data")); } catch (NoSuchFieldException e) { throw new Error(e); } }
public AtomicData(int data) { this.data = data; }
public void decrease(int amount) { int oldValue; while(true) { // 获取共享变量旧值,可以在这一行加入断点,修改 data 调试来加深理解 oldValue = data; // cas 尝试修改 data 为 旧值 + amount,如果期间旧值被别的线程改了,返回 false if (unsafe.compareAndSwapInt(this, DATA_OFFSET, oldValue, oldValue - amount)) { return; } } } public int getData() { return data; } }
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· DeepSeek “源神”启动!「GitHub 热点速览」
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· DeepSeek R1 简明指南:架构、训练、本地部署及硬件要求
· NetPad:一个.NET开源、跨平台的C#编辑器