JRE 和 JDK

  • JDK 是 Java Development Kit 缩写,它是功能齐全的 Java SDK。它拥有 JRE 所拥有的一切(包含了 JRE),还有编译器(javac)和工具(如 javadoc 和 jdb)。它能够创建和编译 Java 程序。
  • JRE 是 Java 运行时环境。它是运行已编译 Java 程序所需的所有内容的集合,包括 Java 虚拟机(JVM)Java 类库java 命令和其他的一些基础构件。但是,它不能用于创建新程序。

JRE

有些人认为如果是运行,那JVM不就够了吗,其实还不够,因为在解释class文件时,JVM需要调用解释所需要的类库 lib。jre的安装目录下,里面有两个文件夹bin和lib,笼统的分析下,这里可以认为bin里的就是jvm,lib中则是jvm工作所需要的类库,jvm和 lib合起来就称为jre。

JDK

JDK(Java Development Kit)是Java的开发工具包,它不仅提供了Java程序运行所需的JRE,还提供了一系列的编译,运行等工具,如javac,java,javaw等。

简单列举一下JDK包括的一些开发工具:

  • javac – 编译器,将源程序转成字节码。

  • jar – 打包工具,将相关的类文件打包成一个文件。

  • javadoc – 文档生成器,从源码注释中提取文档。

  • jdb – debugger,查错工具。

  • java – 运行编译后的java程序(.class后缀的)。

  • appletviewer:小程序浏览器,一种执行HTML文件上的Java小程序的Java浏览器。

  • Javah:产生可以调用Java过程的C过程,或建立能被Java程序调用的C过程的头文件。

  • Javap:Java反汇编器,显示编译类文件中的可访问功能和数据,同时显示字节代码含义。

  • Jconsole: Java进行系统调试和监控的工具。

 

JAVA 内存区域

对于从事C、C++程序开发的开发人员来说,在内存管理领域,他们既是拥有最高权力的“皇帝”,又是从事最基础工作的劳动人民——既拥有每一个对象的“所有权”,又担负着每一个对象生命从开始到终结的维护责任。
  对于Java程序员来说,在虚拟机自动内存管理机制的帮助下,不再需要为每一个new操作去写配对的delete/free代码,不容易出现内存泄漏和内存溢出问题,看起来由虚拟机管理内存一切都很美好。不过,也正是因为Java程序员把控制内存的权力交给了Java虚拟机,一旦出现内存泄漏和溢出方面的问题,如果不了解虚拟机是怎样使用内存的,那排查错误、修正问题将会成为一项异常艰难的工作。
 

 

程序计数器(Program Counter Register)

  是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器在Java虚拟机的概念模型里[1],字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。
  如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是本地(Native)方法,这个计数器值则应为空(Undefined)。此内存区域是唯一一个在《Java虚拟机规范》中没有规定任何OutOfMemoryError情况的区域。

 

Java虚拟机栈(Java Virtual Machine Stack)

  与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型:每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧(Stack Frame)用于存储 局部变量表、操作数栈、动态连接、方法出口 等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。经常有人把Java内存区域笼统地划分为堆内存(Heap)和栈内存(Stack),这种划分方式直接继承自传统的C、C++程序的内存布局结构,在Java语言里就显得有些粗糙了,实际的内存区域划分要比这更复杂。不过这种划分方式的流行也间接说明了程序员最关注的、与对象内存分配关系最密切的区域是“堆”和“栈”两块。其中,“堆”在稍后笔者会专门讲述,而“栈”通常就是指这里讲的虚拟机栈,或者更多的情况下只是指虚拟机栈中局部变量表部分。
  局部变量表存放了
编译期可知的各种Java虚拟机基本数据类型(boolean、byte、char、short、int、float、long、double)
对象引用(reference类型,它并不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或者其他与此对象相关的位置)
returnAddress类型(指向了一条字节码指令的地址)
  这些数据类型在局部变量表中的存储空间以局部变量槽(Slot)来表示,其中64位长度的long和double类型的数据会占用两个变量槽,其余的数据类型只占用一个。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在栈帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。请读者注意,这里说的“大小”是指变量槽的数量,虚拟机真正使用多大的内存空间(譬如按照1个变量槽占用32个比特、64个比特,或者更多)来实现一个变量槽,这是完全由具体的虚拟机实现自行决定的事情。
  在《Java虚拟机规范》中,对这个内存区域规定了两类异常状况:
栈深度溢出:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;
栈扩展失败:如果Java虚拟机栈容量可以动态扩展[2],当栈扩展时无法申请到足够的内存会抛出OutOfMemoryError异常。
 

本地方法栈(Native Method Stacks)

  与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。《Java虚拟机规范》对本地方法栈中方法使用的语言、使用方式与数据结构并没有任何强制规定,因此具体的虚拟机可以根据需要自由实现它,甚至有的Java虚拟机(譬如Hot-Spot虚拟机)直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈也会在栈深度溢出或者栈扩展失败时分别抛出StackOverflowError和OutOfMemoryError异常。
 

Java堆(Java Heap)

  对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,Java世界里“几乎”所有的对象实例都在这里分配内存。在《Java虚拟机规范》中对Java堆的描述是:“所有的对象实例以及数组都应当在堆上分配[1]”。Java堆是垃圾收集器管理的内存区域,因此一些资料中它也被称作“GC堆”(Garbage Collected Heap,幸好国内没翻译成“垃圾堆”)。
  从回收内存的角度看,由于现代垃圾收集器大部分都是基于分代收集理论设计的,所以Java堆中经常会出现“新生代”“老年代”“永久代”“Eden空间”“From Survivor空间”“To Survivor空间”等名词,这些概念在本书后续章节中还会反复登场亮相,在这里笔者想先说明的是这些区域划分仅仅是一部分垃圾收集器的共同特性或者说设计风格而已,而非某个Java虚拟机具体实现的固有内存布局,更不是《Java虚拟机规范》里对Java堆的进一步细致划分。不少资料上经常写着类似于“Java虚拟机的堆内存分为新生代、老年代、永久代、Eden、Survivor……”这样的内容。在十年之前(以G1收集器的出现为分界),作为业界绝对主流的HotSpot虚拟机,它内部的垃圾收集器全部都基于“经典分代”[3]来设计,需要新生代、老年代收集器搭配才能工作,在这种背景下,上述说法还算是不会产生太大歧义。但是到了今天,垃圾收集器技术与十年前已不可同日而语,HotSpot里面也出现了不采用分代设计的新垃圾收集器,再按照上面的提法就有很多需要商榷的地方了。
 如果从分配内存的角度看,所有线程共享的Java堆中可以划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB),以提升对象分配时的效率。不过无论从什么角度,无论如何划分,都不会改变Java堆中存储内容的共性,无论是哪个区域,存储的都只能是对象的实例,将Java堆细分的目的只是为了更好地回收内存,或者更快地分配内存。
  Java堆既可以被实现成固定大小的,也可以是可扩展的,不过当前主流的Java虚拟机都是按照可扩展来实现的(通过参数-Xmx和-Xms设定)。如果在Java堆中没有内存完成实例分配,并且堆也无法再扩展时,Java虚拟机将会抛出OutOfMemoryError异常。 
 

方法区(Method Area)

方法区(Method Area)与Java堆一样,是各个线程共享的内存区域它用于存储已被虚拟机加载的【类型信息(字节码)】、【常量】(运行时常量池是方法区的一部分)、【静态变量】、即时编译器编译后的代码缓存等数据。
虽然《Java虚拟机规范》中把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫作“非堆”(Non-Heap),目的是与Java堆区分开来。
说到方法区,不得不提一下“永久代”这个概念,尤其是在JDK 8以前,许多Java程序员都习惯在HotSpot虚拟机上开发、部署程序,很多人都更愿意把方法区称呼为“永久代”(Permanent Generation),或将两者混为一谈。本质上这两者并不是等价的,因为仅仅是当时的HotSpot虚拟机设计团队选择把收集器的分代设计扩展至方法区,或者说使用永久代来实现方法区而已,这样使得HotSpot的垃圾收集器能够像管理Java堆一样管理这部分内存,省去专门为方法区编写内存管理代码的工作。
考虑到HotSpot未来的发展,在JDK 6的时候HotSpot开发团队就有放弃永久代,逐步改为采用本地内存(Native Memory)来实现方法区的计划了[1],到了JDK 7的HotSpot,已经把原本放在永久代的字符串常量池、静态变量等移出,而到了JDK 8,终于完全废弃了永久代的概念,改用与JRockit、J9一样在本地内存中实现的元空间(Meta-space)来代替,把JDK 7中永久代还剩余的内容(主要是类型信息)全部移到元空间中。
相对而言,垃圾收集行为在这个区域的确是比较少出现的,但并非数据进入了方法区就如永久代的名字一样“永久”存在了。这区域的内存回收目标主要是针对常量池的回收和对类型的卸载,一般来说这个区域的回收效果比较难令人满意,尤其是类型的卸载,条件相当苛刻,但是这部分区域的回收有时又确实是必要的。
 

运行时常量池(Runtime Constant Pool)

运行时常量池(Runtime Constant Pool)是方法区的一部分Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后进入方法区的运行时常量池中存放。
运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性Java语言并不要求常量一定只有编译期才能产生也就是并非预置入Class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中这种特性被开发人员利用得比较多的便是String类的intern()方法。
 

细节深化

名称及位置变更

基本数据类型

在线程私有的栈内存,也就是对于那些 局部变量,基本数据类型 可以直接在栈上分配内存,但是如下这些,不直接在栈上分配内存而只存储其引用

  • 包装类型如 Integer Boolean 在堆上存储
  • 基本数据类型的数组如 in[] 也是在堆内存存储的
  • 字符串在字符串常量池存储
  • 普通类在堆上存储

另外如果是 static 或 final 的类属性即全局变量,基本数据类型 也不是分配在栈中的,而是 1.8 之前在方法区(永久代),1.8之后在堆中

字符串

字符串的创建分为以下三种:

  • 直接赋值:= "aaa" 这种方式创建的字符串对象,只会在常量池中。返回的也只是字符串常量池中的对象引用
  • new String():这种方式会保证字符串常量池和堆中都有这个对象,最后返回堆内存中的对象引用
  • intern方法
String s1 = new String("aaa");   
String s2 = s1.intern();

JDK 1.6

  • 首先会在字符串常量池中寻找与hello(s1的值) 的equal()方法 相等的字符串
  • 假如字符串存在,就返回该字符串在字符串常量池中的引用
  • 假如字符串不存在,jvm会重新在永久代上创建一个实例,并返回这个字符串常量池中新建的实例hello

 JDK 1.8

由于字符串常量池不在永久代了,放在了堆中,刚好字符串对象s1也是存在于堆中的,所以intern() 做了一些修改,

为了更方便地利用堆中的对象,省去了字符串常量池的复制操作!可以直接指向堆上的实例hello

 

 

 

对象的创建

1、类加载检查

虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用;并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

2、为新生对象分配内存

垃圾收集器是否带有压缩整理功能决定堆是否规整(所有用过的内存都放在一边,空闲的内存放在另一边)

    • 规整——指针碰撞(Bump the Pointer):已用和空闲中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离
    • 不规整——空闲列表(Free List):虚拟机维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录

线程安全:即使是仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。解决方案:

    • 对分配内存空间的动作进行同步处理——实际上虚拟机采用CAS(乐观锁,compare and swap,JVM中CAS是通过UnSafe类来调用操作系统底层的CAS指令实现)配上失败重试的方式保证更新操作的原子性;
    • 把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer,TLAB)。哪个线程要分配内存,就在哪个线程的TLAB上分配,只有TLAB用完并分配新的TLAB时,才需要同步锁定虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB参数来设定。

3、内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头)

如果使用TLAB,这一工作过程也可以提前至TLAB分配时进行。这一步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。

4、对象进行必要的设置放在对象头 Object Header

例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。根据虚拟机当前的运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

5、从虚拟机的视角来看,一个新的对象已经产生了。但从Java程序的视角来看,对象创建才刚刚开始——要执行<init>方法,把对象按照程序员的意愿进行初始化。

 

 

对象的内存布局

对象在内存中存储的布局可以分为3块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

1、对象头包括:

  • 存储对象自身的运行时数据,官方称它为“Mark Word”     
  • 类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。并不是所有的虚拟机实现都必须在对象数据上保留类型指针,换句话说,查找对象的元数据信息并不一定要经过对象本身   
  • 如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是从数组的元数据中却无法确定数组的大小。

2、实例数据部分是对象真正存储的有效信息,也是在程序代码中所定义的各种类型的字段内容。包括从父类继承下来的。

3、第三部分对齐填充并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot VM的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说,就是对象的大小必须是8字节的整数倍。因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。

 

对象的访问定位

我们的Java程序需要通过栈(方法执行时的虚拟机栈)上的reference数据来操作(堆上的具体对象)。

目前主流的访问方式有使用句柄和直接指针两种。

1、如果使用句柄访问的话,那么Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址。

使用句柄来访问的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要修改。

 

 

2、如果使用直接指针访问,reference中存储的直接就是对象地址。

最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是一项非常可观的执行成本。

 

 Java 堆溢出

  Java堆用于存储对象实例,只要不断地创建对象,并且保证GC Roots到对象之间有可达路径来避免垃圾回收机制清除这些对象,那么在对象数量到达最大堆的容量限制后就会产生内存溢出异常。

  要解决这个区域的异常,一般的手段是先通过内存映像分析工具(如Eclipse Memory Analyzer)对Dump出来的堆转储快照进行分析,重点是确认内存中的对象是否是必要的,也就是要先分清楚到底是出现了内存泄漏(Memory Leak)还是内存溢出(Memory Overflow)。

内存中的数据是没有必要的:内存泄漏;内存中的数据是有必要的:就是单纯的内存溢出。

内存泄漏定义:对象已经没有被应用程序使用,但是垃圾回收器没办法移除它们,因为还在被引用着。

下面给出一个 Java 内存泄漏的典型例子

Vector v = new Vector(10);

for (int i = 0; i < 100; i++) {
    Object o = new Object();
    v.add(o);
    o = null;
}

 

Java内存泄漏的根本原因是什么呢?长生命周期的对象持有短生命周期对象的引用就很可能发生内存泄漏,尽管短生命周期对象已经不再需要,但是因为长生命周期持有它的引用而导致不能被回收,这就是Java中内存泄漏的发生场景。

具体场景见 https://blog.csdn.net/weixin_44388689/article/details/124615496

      

 

如果是内存泄露,可进一步通过工具查看泄露对象到GC Roots的引用链。于是就能找到泄露对象是通过怎样的路径与GC Roots相关联并导致垃圾收集器无法自动回收它们的。掌握了泄露对象的类型信息及GC Roots引用链的信息,就可以比较准确地定位出泄露代码的位置。

如果不存在泄露,换句话说,就是内存中的对象确实都还必须存活着,那就应当检查虚拟机的堆参数(-Xmx与-Xms),与机器物理内存对比看是否还可以调大,从代码上检查是否存在某些对象生命周期过长、持有状态时间过长的情况,尝试减少程序运行期的内存消耗。

 

 

虚拟机栈和本地方法栈溢出

在Java虚拟机规范中描述了两种异常:

如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常。

如果虚拟机在扩展栈时无法申请到足够的内存空间,则抛出OutOfMemoryError异常。

实验结果表明:在单个线程下,无论是由于栈帧太大还是虚拟机栈容量太小,当内存无法分配的时候,虚拟机抛出的都是StackOverflowError异常。

其实原因不难理解,操作系统分配给每个进程的内存是有限制的,譬如32位的Windows限制为2GB。虚拟机提供了参数来控制Java堆和方法区的这两部分内存的最大值。剩余的内存为2GB(操作系统限制)减去Xmx(最大堆容量),再减去MaxPermSize(最大方法区容量),程序计数器消耗内存很小,可以忽略掉。如果虚拟机进程本身耗费的内存不计算在内,剩下的内存就由虚拟机栈和本地方法栈“瓜分”了。每个线程分配到的栈容量越大,可以建立的线程数量自然就越少,建立线程时就越容易把剩下的内存耗尽。

如果使用虚拟机默认参数,栈深度在大多数情况下(因为每个方法压入栈的帧大小并不是一样的,所以只能说在大多数情况下)达到1000~2000完全没有问题,对于正常的方法调用(包括递归),这个深度应该完全够用了。但是,如果是建立过多线程导致的内存溢出,在不能减少线程数或者更换64位虚拟机的情况下,就只能通过减少最大堆和减少栈容量来换取更多的线程(因为操作系统分配给每个进程的内存是有限制的?)。如果没有这方面的处理经验,这种通过“减少内存”的手段来解决内存溢出的方式会比较难以想到。

 

方法区和运行时常量池溢出

String.intern()是一个Native方法,它的作用是:如果字符串常量池中已经包含一个等于此String对象的字符串,则返回代表池中这个字符串的String对象;否则,将此String对象包含的字符串添加到常量池中,并且返回此String对象的引用。

字符串 https://blog.csdn.net/qq_45076180/article/details/115082348?spm=1001.2101.3001.6650.3&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-3-115082348-blog-118074200.pc_relevant_multi_platform_whitelistv4&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-3-115082348-blog-118074200.pc_relevant_multi_platform_whitelistv4&utm_relevant_index=6

在JDK 1.6及之前的版本中,由于常量池分配在永久代内,我们可以通过-XX:PermSize和-XX:MaxPermSize限制方法区大小,从而间接限制其中常量池的容量