Zhong

Keep thinking. Keep moving.

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

RSA是一种非对称加密算法,在公开密钥和电子商业中RSA被广泛使用。它是基于一个很简单的数论事实,两个素数相乘很容易,对两素数乘积因式分解很困难。原理就不再阐述了,我谈谈算法的编程实现过程。

一、RSA加密和解密过程是基于以下形式,其中明文为M,密文为C,公匙PU={e, n},密匙PR={d, n}。

1、准备工作,选择两个大素数p和q,计算p和q的乘积n,计算p-1和q-1的乘积,选择一个与p-1和q-1乘积互质的数e,计算出d

1

2、加密过程

2

3、解密过程

3

程序没有生成大素数,只是列出1000以内的素数,随机取两个素数p和q,利用欧德里德扩展算法计算出e和d,用反复平方法求数的幂

二、程序流程图

          5

三、程序源码

  1 #include <iostream>
  2 #include <cmath>
  3 #include <cstring>
  4 #include <ctime>
  5 #include <cstdlib>
  6 using namespace std;
  7 
  8 
  9 int Plaintext[100];//明文
 10 long long Ciphertext[100];//密文
 11 int n, e = 0, d;
 12 
 13 //二进制转换
 14 int BianaryTransform(int num, int bin_num[])
 15 {
 16 
 17     int i = 0,  mod = 0;
 18 
 19     //转换为二进制,逆向暂存temp[]数组中
 20     while(num != 0)
 21     {
 22         mod = num%2;
 23         bin_num[i] = mod;
 24         num = num/2;
 25         i++;
 26     }
 27 
 28     //返回二进制数的位数
 29     return i;
 30 }
 31 
 32 //反复平方求幂
 33 long long Modular_Exonentiation(long long a, int b, int n)
 34 {
 35     int c = 0, bin_num[1000];
 36     long long d = 1;
 37     int k = BianaryTransform(b, bin_num)-1;
 38 
 39     for(int i = k; i >= 0; i--)
 40     {
 41         c = 2*c;
 42         d = (d*d)%n;
 43         if(bin_num[i] == 1)
 44         {
 45             c = c + 1;
 46             d = (d*a)%n;
 47         }
 48     }
 49     return d;
 50 }
 51 
 52 //生成1000以内素数
 53 int ProducePrimeNumber(int prime[])
 54 {
 55     int c = 0, vis[1001];
 56     memset(vis, 0, sizeof(vis));
 57     for(int i = 2; i <= 1000; i++)if(!vis[i])
 58     {
 59         prime[c++] = i;
 60         for(int j = i*i; j <= 1000; j+=i)
 61             vis[j] = 1;
 62     }
 63 
 64     return c;
 65 }
 66 
 67 
 68 //欧几里得扩展算法
 69 int Exgcd(int m,int n,int &x)
 70 {
 71     int x1,y1,x0,y0, y;
 72     x0=1; y0=0;
 73     x1=0; y1=1;
 74     x=0; y=1;
 75     int r=m%n;
 76     int q=(m-r)/n;
 77     while(r)
 78     {
 79         x=x0-q*x1; y=y0-q*y1;
 80         x0=x1; y0=y1;
 81         x1=x; y1=y;
 82         m=n; n=r; r=m%n;
 83         q=(m-r)/n;
 84     }
 85     return n;
 86 }
 87 
 88 //RSA初始化
 89 void RSA_Initialize()
 90 {
 91     //取出1000内素数保存在prime[]数组中
 92     int prime[5000];
 93     int count_Prime = ProducePrimeNumber(prime);
 94 
 95     //随机取两个素数p,q
 96     srand((unsigned)time(NULL));
 97     int ranNum1 = rand()%count_Prime;
 98     int ranNum2 = rand()%count_Prime;
 99     int p = prime[ranNum1], q = prime[ranNum2];
100 
101     n = p*q;
102 
103     int On = (p-1)*(q-1);
104 
105 
106     //用欧几里德扩展算法求e,d
107     for(int j = 3; j < On; j+=1331)
108     {
109         int gcd = Exgcd(j, On, d);
110         if( gcd == 1 && d > 0)
111         {
112             e = j;
113             break;
114         }
115 
116     }
117 
118 }
119 
120 //RSA加密
121 void RSA_Encrypt()
122 {
123     cout<<"Public Key (e, n) : e = "<<e<<" n = "<<n<<'\n';
124     cout<<"Private Key (d, n) : d = "<<d<<" n = "<<n<<'\n'<<'\n';
125 
126     int i = 0;
127     for(i = 0; i < 100; i++)
128         Ciphertext[i] = Modular_Exonentiation(Plaintext[i], e, n);
129 
130     cout<<"Use the public key (e, n) to encrypt:"<<'\n';
131     for(i = 0; i < 100; i++)
132         cout<<Ciphertext[i]<<" ";
133     cout<<'\n'<<'\n';
134 }
135 
136 //RSA解密
137 void RSA_Decrypt()
138 {
139     int i = 0;
140     for(i = 0; i < 100; i++)
141         Ciphertext[i] = Modular_Exonentiation(Ciphertext[i], d, n);
142 
143     cout<<"Use private key (d, n) to decrypt:"<<'\n';
144     for(i = 0; i < 100; i++)
145         cout<<Ciphertext[i]<<" ";
146     cout<<'\n'<<'\n';
147 }
148 
149 
150 //算法初始化
151 void Initialize()
152 {
153     int i;
154     srand((unsigned)time(NULL));
155     for(i = 0; i < 100; i++)
156         Plaintext[i] = rand()%1000;
157 
158     cout<<"Generate 100 random numbers:"<<'\n';
159     for(i = 0; i < 100; i++)
160         cout<<Plaintext[i]<<" ";
161     cout<<'\n'<<'\n';
162 }
163 
164 int main()
165 {
166     Initialize();
167 
168     while(!e)
169         RSA_Initialize();
170 
171     RSA_Encrypt();
172 
173     RSA_Decrypt();
174 
175     return 0;
176 }
View Code

 

 

四、运行结果

6

posted on 2013-11-01 20:34  stwzhong  阅读(25305)  评论(1编辑  收藏  举报