[转载]Trie树
很有段时间没写此系列了,今天我们来说Trie树,Trie树的名字有很多,比如字典树,前缀树等等。
一:概念
下面我们有and,as,at,cn,com这些关键词,那么如何构建trie树呢?
从上面的图中,我们或多或少的可以发现一些好玩的特性。
第一:根节点不包含字符,除根节点外的每一个子节点都包含一个字符。
第二:从根节点到某一节点,路径上经过的字符连接起来,就是该节点对应的字符串。
第三:每个单词的公共前缀作为一个字符节点保存。
二:使用范围
既然学Trie树,我们肯定要知道这玩意是用来干嘛的。
第一:词频统计。
可能有人要说了,词频统计简单啊,一个hash或者一个堆就可以打完收工,但问题来了,如果内存有限呢?还能这么
玩吗?所以这里我们就可以用trie树来压缩下空间,因为公共前缀都是用一个节点保存的。
第二: 前缀匹配
就拿上面的图来说吧,如果我想获取所有以"a"开头的字符串,从图中可以很明显的看到是:and,as,at,如果不用trie树,
你该怎么做呢?很显然朴素的做法时间复杂度为O(N2) ,那么用Trie树就不一样了,它可以做到h,h为你检索单词的长度,
可以说这是秒杀的效果。
举个例子:现有一个编号为1的字符串”and“,我们要插入到trie树中,采用动态规划的思想,将编号”1“计入到每个途径的节点中,
那么以后我们要找”a“,”an“,”and"为前缀的字符串的编号将会轻而易举。
三:实际操作
到现在为止,我想大家已经对trie树有了大概的掌握,下面我们看看如何来实现。
1:定义trie树节点
为了方便,我也采用纯英文字母,我们知道字母有26个,那么我们构建的trie树就是一个26叉树,每个节点包含26个子节点。
1 #region Trie树节点
2 /// <summary>
3 /// Trie树节点
4 /// </summary>
5 public class TrieNode
6 {
7 /// <summary>
8 /// 26个字符,也就是26叉树
9 /// </summary>
10 public TrieNode[] childNodes;
11
12 /// <summary>
13 /// 词频统计
14 /// </summary>
15 public int freq;
16
17 /// <summary>
18 /// 记录该节点的字符
19 /// </summary>
20 public char nodeChar;
21
22 /// <summary>
23 /// 插入记录时的编码id
24 /// </summary>
25 public HashSet<int> hashSet = new HashSet<int>();
26
27 /// <summary>
28 /// 初始化
29 /// </summary>
30 public TrieNode()
31 {
32 childNodes = new TrieNode[26];
33 freq = 0;
34 }
35 }
36 #endregion
2: 添加操作
既然是26叉树,那么当前节点的后续子节点是放在当前节点的哪一叉中,也就是放在childNodes中哪一个位置,这里我们采用
int k = word[0] - 'a'来计算位置。
1 /// <summary>
2 /// 插入操作
3 /// </summary>
4 /// <param name="root"></param>
5 /// <param name="s"></param>
6 public void AddTrieNode(ref TrieNode root, string word, int id)
7 {
8 if (word.Length == 0)
9 return;
10
11 //求字符地址,方便将该字符放入到26叉树中的哪一叉中
12 int k = word[0] - 'a';
13
14 //如果该叉树为空,则初始化
15 if (root.childNodes[k] == null)
16 {
17 root.childNodes[k] = new TrieNode();
18
19 //记录下字符
20 root.childNodes[k].nodeChar = word[0];
21 }
22
23 //该id途径的节点
24 root.childNodes[k].hashSet.Add(id);
25
26 var nextWord = word.Substring(1);
27
28 //说明是最后一个字符,统计该词出现的次数
29 if (nextWord.Length == 0)
30 root.childNodes[k].freq++;
31
32 AddTrieNode(ref root.childNodes[k], nextWord, id);
33 }
34 #endregion
3:删除操作
删除操作中,我们不仅要删除该节点的字符串编号,还要对词频减一操作。
/// <summary>
/// 删除操作
/// </summary>
/// <param name="root"></param>
/// <param name="newWord"></param>
/// <param name="oldWord"></param>
/// <param name="id"></param>
public void DeleteTrieNode(ref TrieNode root, string word, int id)
{
if (word.Length == 0)
return;
//求字符地址,方便将该字符放入到26叉树种的哪一颗树中
int k = word[0] - 'a';
//如果该叉树为空,则说明没有找到要删除的点
if (root.childNodes[k] == null)
return;
var nextWord = word.Substring(1);
//如果是最后一个单词,则减去词频
if (word.Length == 0 && root.childNodes[k].freq > 0)
root.childNodes[k].freq--;
//删除途经节点
root.childNodes[k].hashSet.Remove(id);
DeleteTrieNode(ref root.childNodes[k], nextWord, id);
}
4:测试
这里我从网上下载了一套的词汇表,共2279条词汇,现在我们要做的就是检索“go”开头的词汇,并统计go出现的频率。
1 public static void Main()
2 {
3 Trie trie = new Trie();
4
5 var file = File.ReadAllLines(Environment.CurrentDirectory + "//1.txt");
6
7 foreach (var item in file)
8 {
9 var sp = item.Split(new char[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
10
11 trie.AddTrieNode(sp.LastOrDefault().ToLower(), Convert.ToInt32(sp[0]));
12 }
13
14 Stopwatch watch = Stopwatch.StartNew();
15
16 //检索go开头的字符串
17 var hashSet = trie.SearchTrie("go");
18
19 foreach (var item in hashSet)
20 {
21 Console.WriteLine("当前字符串的编号ID为:{0}", item);
22 }
23
24 watch.Stop();
25
26 Console.WriteLine("耗费时间:{0}", watch.ElapsedMilliseconds);
27
28 Console.WriteLine("\n\ngo 出现的次数为:{0}\n\n", trie.WordCount("go"));
29 }
下面我们拿着ID到txt中去找一找,嘿嘿,是不是很有意思。
测试文件:1.txt
完整代码:
View Code
作者:Jingle Guo
出处:http://www.cnblogs.com/studynote/
若标题中有“转载”字样,则本文版权归原作者所有。若无转载字样,本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.