平衡二叉树--java
package com.test.tree; /** * 带有平衡条件的二叉查找树 * */ public class AVLBinarySearchTree<T extends Comparable<? super T>> { /*内部类,定义二叉树中的节点结构*/ private static class TreeNode<T>{ private T data; //节点的值 private TreeNode<T> lt; //节点左子树 private TreeNode<T> rt; //节点右子树 private int height; //用来记录节点的高度,进行单旋转或双旋转 public TreeNode(T data) { this(data, null, null); } public TreeNode(T data, TreeNode<T> lt, TreeNode<T> rt) { this.data = data; this.lt = lt; this.rt = rt; this.height = 0; } public T getData() { return data; } public void setData(T data) { this.data = data; } public TreeNode<T> getLt() { return lt; } public void setLt(TreeNode<T> lt) { this.lt = lt; } public TreeNode<T> getRt() { return rt; } public void setRt(TreeNode<T> rt) { this.rt = rt; } public int getHeight() { return height; } public void setHeight(int height) { this.height = height; } } /** * 计算节点的高度 * @param t 输入子树 * @return 返回树的高度 */ public int height(TreeNode<T> t){ return t==null ? -1 : t.height; } /** * 给树中添加节点 * @param data 要插入的节点值 * @param t 要插入的子树 * @return 插入后形成的新的树 */ public TreeNode<T> insert(T data, TreeNode<T> t){ if(t == null){ //树为空 return new TreeNode<T>(data, null ,null); } int compareReslt = compare(data, t.data); if(compareReslt < 0){ //插入的数小于节点数,放入左子树中 t.lt = insert(data, t.lt) ; //递归插入左子树 //插入后检查当前节点的左右子树是否平衡 if(height(t.lt)-height(t.rt) == 2){ if(compare(data, t.lt.data) < 0){ t = rotateWithLeftChild(t); //单旋转 }else if(compare(data, t.lt.data) > 0){ t = doubleWithLeftChild(t); //双旋转 } } }else if(compareReslt > 0){ //插入的数大于节点数,放入右子树中 t.rt = insert(data, t.rt) ; //递归插入左子树 //插入后检查当前节点的左右子树是否平衡 if(height(t.rt)-height(t.lt) == 2){ if(compare(data, t.rt.data) > 0){ t = rotateWithRightChild(t); //单旋转 }else if(compare(data, t.rt.data) > 0){ t = doubleWithRightChild(t); //双旋转 } } } t.height = Math.max(height(t.lt), height(t.rt)) + 1; return t; } private TreeNode<T> rotateWithRightChild(TreeNode<T> k2) { // TODO Auto-generated method stub TreeNode<T> k1 = k2.rt; k2.rt = k1.lt; //左子树的右节点介于左子树根节点和根节点之间,赋值给根节点的左子树 k1.lt = k2; //将根节点赋值给左节点的右节点 k2.height = Math.max(height(k2.lt), height(k2.rt)) + 1; k1.height = Math.max(height(k1.rt), k2.height) + 1; return k1; } private TreeNode<T> doubleWithRightChild(TreeNode<T> k3) { // TODO Auto-generated method stub k3.rt = rotateWithLeftChild(k3.rt); return rotateWithRightChild(k3); } /** * 单旋转 * @param t * @return */ private TreeNode<T> rotateWithLeftChild(TreeNode<T> k2) { // TODO Auto-generated method stub TreeNode<T> k1 = k2.lt; //左子树的根节点赋给K1 k2.lt = k1.rt; //左子树的右节点介于左子树根节点和根节点之间,赋值给根节点的左子树 k1.rt = k2; //将根节点赋值给左节点的右节点 k2.height = Math.max(height(k2.lt), height(k2.rt)) + 1; k1.height = Math.max(height(k1.lt), k2.height) + 1; return k1; } /** * 双旋转 * @param t * @return */ private TreeNode<T> doubleWithLeftChild(TreeNode<T> k3) { // TODO Auto-generated method stub k3.lt = rotateWithRightChild(k3.lt); return rotateWithLeftChild(k3); } /** * 比较两个值是否相等 * @param data1 * @param data2 * @return */ public int compare(T data1, T data2){ return data1.compareTo(data2); } /*中序遍历*/ public void printTree(TreeNode<T> t){ if(t != null){ printTree(t.lt); System.out.print(t.data+"、"); printTree(t.rt); } } public static void main(String[] args) { AVLBinarySearchTree<Integer> aVLBinarySearchTree = new AVLBinarySearchTree<Integer>(); TreeNode<Integer> node = new TreeNode<Integer>(8); node = aVLBinarySearchTree.insert(6, node); node = aVLBinarySearchTree.insert(16, node); node = aVLBinarySearchTree.insert(13, node); node = aVLBinarySearchTree.insert(19, node); node = aVLBinarySearchTree.insert(7, node); node = aVLBinarySearchTree.insert(21, node); node = aVLBinarySearchTree.insert(23, node); aVLBinarySearchTree.printTree(node.lt); aVLBinarySearchTree.printTree(node.rt); } }