90年高考题
\(已知实数x,y满足(x-2)^2+y^2=3,求\frac{y}{x}的最大值\)
\(设\frac{y}{x}=t\)
\(则y=tx\)
\((x-2)^2+t^2x^2=3\)
\(整理为:(1+t^2)x^2-4x+1=0\)
\(上式的判别式\delta为16-4(1+t^2)≥0\)
\(则:1+t^2≤4\)
\(即:t^2≤3\)
\(即:|t|≤\sqrt{3}\)
\(则:-\sqrt{3}≤t≤\sqrt{3}\)
\(即\frac{y}{x}的最大值是\sqrt{3}\)
或
\(t^2≤3\)
\(t^2-3≤0\)
\(t^2-\sqrt{3}≤0\)
\(t^2-(-\sqrt{3})≤0\)
\(即(t+\sqrt{3})(t-\sqrt{3})≤0\)
\(即:t+\sqrt{3}与t-\sqrt{3}异号\)
\(即t+\sqrt{3}>0且t-\sqrt{3}<0或者:t+\sqrt{3}<0且t-\sqrt{3}>0\)
\(即:t>-\sqrt{3}且t<\sqrt{3},或者t<-\sqrt{3}且t>\sqrt{3}\)
\(第二种情况显然不成立,故t>-\sqrt{3}且t<\sqrt{3}\)
\(故:\frac{y}{x}最大值为\sqrt{3}\)