Loading

排序算法-归并排序

归并排序

实现原理

所谓归并排序,指的是如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。

归并排序使用了分治思想,分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。说到这里,可能你就能联想起我们之前讲到的一个编程技巧 —— 递归,没错,归并排序就是通过递归来实现的。这个递归的公式是每次都将传入的待排序数组一分为二,直到不能分割,然后将排序后序列合并,最终返回排序后的数组。

原理图如下所示:

由于涉及到递归,所以归并排序从理解上要比前面三个排序要困难一些,还是建议通过这个动态图帮助理解:https://visualgo.net/zh/sorting,在界面顶部选择归并排序,然后在左下角点击执行即可。

示例代码

归并排序的 PHP 实现代码如下:

<?php
    function merge_sort($nums)
    {
        if (count($nums) <= 1) {
            return  $nums;
        }
    
        merge_sort_c($nums, 0, count($nums) - 1);
        return $nums;
    }
    
    function merge_sort_c(&$nums, $p, $r)
    {
        if ($p >= $r) {
            return;
        }
    
        $q = floor(($p + $r) / 2);
        merge_sort_c($nums, $p, $q);
        merge_sort_c($nums, $q + 1, $r);
    
        merge($nums, ['start' => $p, 'end' => $q], ['start' => $q + 1, 'end' => $r]);
    }
    
    function merge(&$nums, $nums_p, $nums_q)
    {
        $temp = [];
        $i = $nums_p['start'];
        $j = $nums_q['start'];
        $k = 0;
        while ($i <= $nums_p['end'] && $j <= $nums_q['end']) {
            if ($nums[$i] <= $nums[$j]) {
                $temp[$k++] = $nums[$i++];
            } else {
                $temp[$k++] = $nums[$j++];
            }
        }
    
        if ($i <= $nums_p['end']) {
            for (; $i <= $nums_p['end']; $i++) {
                $temp[$k++] = $nums[$i];
            }
        }
    
        if ($j <= $nums_q['end']) {
            for (; $j <= $nums_q['end']; $j++) {
                $temp[$k++] = $nums[$j];
            }
        }
    
        for ($x = 0; $x < $k; $x++) {
            $nums[$nums_p['start'] + $x] = $temp[$x];
        }
    }
    
    $nums = [4, 5, 6, 3, 2, 1];
    $nums = merge_sort($nums);
    print_r($nums);

性能分析

最后我们来总结下,归并排序不涉及相等元素位置交换,是稳定的排序算法,时间复杂度是 O(nlogn),要优于冒泡排序和插入排序的 O(n^2),但是归并排序需要额外的空间存放排序数据,不是原地排序,最多需要和待排序数组同样大小的空间,所以空间复杂度是 O(n)。

归并排序的时间复杂度计算过程:

归并的思路时将一个复杂的问题 a 递归拆解为子问题 b 和 c,再将子问题计算结果合并,最终得到问题的答案,这里我们将归并排序总的时间复杂度设为 T(n),则 T(n) = 2*T(n/2) + n,其中 T(n/2) 是递归拆解的第一步对应子问题的时间复杂度,n 则是合并函数的时间复杂度(一个循环遍历),依次类推,我们可以推导 T(n) 的计算逻辑如下:

T(n) = 2*T(n/2) + n
        = 2*(2*T(n/4) + n/2) + n = 4*T(n/4) + 2*n
        = 4(2*T(n/8) + n/4) + 2*n = 8*T(n/8) + 3*n
        = ...
        = 2^k*T(n/2^k) + k*n

递归到最后,T(n/2^k)≈T(1),也就是 n/2^k = 1,计算归并排序的时间复杂度,就演变成了计算 k 的值,2^k = n,所以 k=log2 n,我们把 k 的值带入上述 T(n) 的推导公式,得到:

T(n) = n*T(1) + n*log2n = n(C + log2n)

把常量和低阶忽略,所以 T(n) = nlogn。

posted @ 2020-04-15 20:23  字符串爱了数组  阅读(230)  评论(0编辑  收藏  举报