[Swift]LeetCode63. 不同路径 II | Unique Paths II
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/9921730.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
Note: m and n will be at most 100.
Example 1:
Input: [ [0,0,0], [0,1,0], [0,0,0] ] Output: 2 Explanation: There is one obstacle in the middle of the 3x3 grid above. There are two ways to reach the bottom-right corner: 1. Right -> Right -> Down -> Down 2. Down -> Down -> Right -> Right
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2
条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
12ms
1 class Solution { 2 func uniquePathsWithObstacles(_ obstacleGrid: [[Int]]) -> Int { 3 let rowCount = obstacleGrid.count 4 let colCount = obstacleGrid.first?.count ?? 0 5 guard rowCount > 0, colCount > 0 else { return 0 } 6 var paths = Array(repeating: Array(repeating: 0, count: colCount), count: rowCount) 7 8 if obstacleGrid[0][0] != 1 { 9 paths[0][0] = 1 10 } 11 for i in 1..<rowCount { 12 if obstacleGrid[i][0] != 1 { 13 paths[i][0] = paths[i-1][0] 14 } 15 } 16 17 for i in 1..<colCount { 18 if obstacleGrid[0][i] != 1 { 19 paths[0][i] = paths[0][i-1] 20 } 21 } 22 23 for r in 1..<rowCount { 24 for c in 1..<colCount { 25 if obstacleGrid[r][c] != 1 { 26 paths[r][c] = paths[r-1][c] + paths[r][c-1] 27 } else { 28 paths[r][c] = 0 29 } 30 } 31 } 32 33 return paths[rowCount-1][colCount-1] 34 } 35 }
16ms
1 class Solution { 2 func uniquePathsWithObstacles(_ obstacleGrid: [[Int]]) -> Int { 3 4 let m = obstacleGrid.count 5 if m == 0 { return 0 } 6 let n = obstacleGrid[0].count 7 if n == 0 { return 0 } 8 9 var f = [[Int]](repeating: [Int](repeating: 0, count: n), count: m) 10 11 for i in 0..<m { 12 if obstacleGrid[i][0] == 1 { 13 break 14 } else { 15 f[i][0] = 1 16 } 17 } 18 19 for i in 0..<n { 20 if obstacleGrid[0][i] == 1 { 21 break 22 } else { 23 f[0][i] = 1 24 } 25 } 26 27 for i in 1..<m { 28 for j in 1..<n { 29 30 if obstacleGrid[i][j] == 1 { 31 f[i][j] = 0 32 } else { 33 f[i][j] = f[i - 1][j] + f[i][j - 1] 34 } 35 } 36 } 37 38 return f[m - 1][n - 1] 39 } 40 }
16ms
1 class Solution { 2 func uniquePathsWithObstacles(_ obstacleGrid: [[Int]]) -> Int { 3 guard obstacleGrid.count > 0 && obstacleGrid[0].count > 0 else { 4 return 0 5 } 6 var m = obstacleGrid.count, n = obstacleGrid[0].count 7 var dp = [[Int]](repeating: [Int](repeating: 0, count: n), count: m) 8 for i in 0..<m { 9 if obstacleGrid[i][0] == 1 { 10 for k in i..<m { 11 dp[k][0] = 0 12 } 13 break 14 } else { 15 dp[i][0] = 1 16 } 17 } 18 for j in 0..<n { 19 if obstacleGrid[0][j] == 1 { 20 for k in j..<n { 21 dp[0][k] = 0 22 } 23 break 24 } else { 25 dp[0][j] = 1 26 } 27 28 } 29 30 for i in 1..<m { 31 for j in 1..<n { 32 if obstacleGrid[i][j] == 1 { 33 dp[i][j] = 0 34 } else { 35 dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 36 } 37 38 } 39 } 40 41 return dp[m - 1][n - 1] 42 } 43 }
20ms
1 class Solution { 2 func uniquePathsWithObstacles(_ obstacleGrid: [[Int]]) -> Int { 3 guard obstacleGrid.count > 0 && obstacleGrid[0].count>0 else { 4 return 0 5 } 6 7 let rowCount = obstacleGrid.count 8 let colCount = obstacleGrid[0].count 9 var dp = [[Int]](repeating:[Int](repeating:1, count:colCount), count:rowCount) 10 var occupiedRow = false 11 var occupiedCol = false 12 for row in 0..<rowCount { 13 if obstacleGrid[row][0] == 1 || occupiedRow { 14 occupiedRow = true 15 dp[row][0] = 0 16 } 17 } 18 19 for col in 0..<colCount { 20 if obstacleGrid[0][col] == 1 || occupiedCol { 21 occupiedCol = true 22 dp[0][col] = 0 23 } 24 } 25 26 for i in 1..<rowCount { 27 for j in 1..<colCount{ 28 if obstacleGrid[i][j] == 1 { 29 dp[i][j] = 0 30 } else { 31 dp[i][j] = (obstacleGrid[i-1][j] == 1 ? 0 : dp[i-1][j]) + (obstacleGrid[i][j-1] == 1 ? 0 : dp[i][j-1]) 32 } 33 } 34 } 35 36 return dp[rowCount-1][colCount-1] 37 } 38 }
24ms
1 class Solution { 2 func uniquePathsWithObstacles(_ obstacleGrid: [[Int]]) -> Int { 3 var Result = Array(repeating: Array(repeating: 0, count:obstacleGrid[0].count) 4 , count: obstacleGrid.count) 5 if obstacleGrid.count == 0 || obstacleGrid[0].count == 0 || obstacleGrid[0][0] == 1 { 6 return 0 7 } 8 // 设置边界值,碰到障碍物后都无路径 9 for i in 0..<obstacleGrid.count { 10 if obstacleGrid[i][0] == 1 { 11 break 12 } 13 Result[i][0] = 1 14 } 15 // 设置边界值,碰到障碍物后都无路径 16 for j in 0..<obstacleGrid[0].count { 17 if obstacleGrid[0][j] == 1 { 18 break 19 } 20 Result[0][j] = 1 21 } 22 23 // 动态规划求出路径(迭代法) 24 for i in 1..<obstacleGrid.count { 25 for j in 1..<obstacleGrid[0].count { 26 if obstacleGrid[i][j] == 0 { 27 Result[i][j] = Result[i-1][j] + Result[i][j-1] 28 } else { // 障碍物无路劲 29 Result[i][j] = 0 30 } 31 } 32 } 33 return Result[Result.count - 1][Result[0].count - 1] 34 } 35 }
24ms
1 class Solution { 2 func uniquePathsWithObstacles(_ obstacleGrid: [[Int]]) -> Int { 3 let R = obstacleGrid.count 4 let C = obstacleGrid[0].count 5 var obstacleGrid = obstacleGrid 6 7 // If the starting cell has an obstacle, then simply return as there would be 8 // no paths to the destination. 9 if obstacleGrid[0][0] == 1 { 10 return 0 11 } 12 13 // Number of ways of reaching the starting cell = 1. 14 obstacleGrid[0][0] = 1 15 16 // Filling the values for the first column 17 for i in 1..<R { 18 obstacleGrid[i][0] = (obstacleGrid[i][0] == 0 && obstacleGrid[i - 1][0] == 1) ? 1 : 0 19 } 20 21 // Filling the values for the first row 22 for i in 1..<C { 23 obstacleGrid[0][i] = (obstacleGrid[0][i] == 0 && obstacleGrid[0][i - 1] == 1) ? 1 : 0 24 } 25 26 // Starting from cell(1,1) fill up the values 27 // No. of ways of reaching cell[i][j] = cell[i - 1][j] + cell[i][j - 1] 28 // i.e. From above and left. 29 for i in 1..<R { 30 for j in 1..<C { 31 if obstacleGrid[i][j] == 0 { 32 obstacleGrid[i][j] = obstacleGrid[i - 1][j] + obstacleGrid[i][j - 1] 33 } else { 34 obstacleGrid[i][j] = 0 35 } 36 } 37 } 38 39 // Return value stored in rightmost bottommost cell. That is the destination. 40 return obstacleGrid[R - 1][C - 1] 41 } 42 }