为有牺牲多壮志,敢教日月换新天。

[Swift]LeetCode935. 骑士拨号器 | Knight Dialer

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/9903415.html 
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

热烈欢迎,请直接点击!!!

进入博主App Store主页,下载使用各个作品!!!

注:博主将坚持每月上线一个新app!!!

A chess knight can move as indicated in the chess diagram below:

 .           

 

This time, we place our chess knight on any numbered key of a phone pad (indicated above), and the knight makes N-1 hops.  Each hop must be from one key to another numbered key.

Each time it lands on a key (including the initial placement of the knight), it presses the number of that key, pressing N digits total.

How many distinct numbers can you dial in this manner?

Since the answer may be large, output the answer modulo 10^9 + 7.

Example 1:

Input: 1
Output: 10

Example 2:

Input: 2
Output: 20

Example 3:

Input: 3
Output: 46

Note:

  • 1 <= N <= 5000

国际象棋中的骑士可以按下图所示进行移动:

 .           


这一次,我们将 “骑士” 放在电话拨号盘的任意数字键(如上图所示)上,接下来,骑士将会跳 N-1 步。每一步必须是从一个数字键跳到另一个数字键。

每当它落在一个键上(包括骑士的初始位置),都会拨出键所对应的数字,总共按下 N 位数字。

你能用这种方式拨出多少个不同的号码?

因为答案可能很大,所以输出答案模 10^9 + 7

示例 1:

输入:1
输出:10

示例 2:

输入:2
输出:20

示例 3:

输入:3
输出:46

提示:

  • 1 <= N <= 5000

284ms
 1 class Solution {
 2     func knightDialer(_ N: Int) -> Int {
 3         var N = N
 4         var mod:Int64 = 1000000007
 5         N -= 1
 6         var dp:[Int64] = [Int64](repeating: 1,count: 10)
 7         for i in 0..<N
 8         {
 9             var ndp:[Int64] = [Int64](repeating: 0,count: 10)
10             ndp[0] = dp[4] + dp[6]
11             ndp[1] = dp[6] + dp[8]
12             ndp[2] = dp[7] + dp[9]
13             ndp[3] = dp[4] + dp[8]
14             ndp[4] = dp[3] + dp[9] + dp[0]
15             ndp[6] = dp[1] + dp[7] + dp[0]
16             ndp[8] = dp[1] + dp[3]
17             ndp[7] = dp[2] + dp[6]
18             ndp[9] = dp[2] + dp[4]
19             for j in 0..<10
20             {
21                 ndp[j] %= mod
22             }
23             dp = ndp
24         }
25         var ret:Int64 = 0
26         for i in 0..<10
27         {
28             ret += dp[i]
29         }
30         return Int(ret % mod)
31     }
32 }

1296ms
 1 class Solution {
 2     func knightDialer(_ N: Int) -> Int {
 3         let navigationMap: [Int: [Int]] = [0: [4, 6],
 4                              1: [6,8],
 5                             2: [7,9],
 6                             3: [4,8],
 7                             4: [3,9,0],
 8                             5: [],
 9                             6: [1,7,0],
10                             7: [2,6],
11                             8: [1,3],
12                             9: [2,4]]
13         
14         var currentPathsStats = [1,1,1,1,1,1,1,1,1,1]   
15         for i in 1..<N {
16             var newStats = [Int](repeating: 0, count: 10)
17             for currentDigit in 0...9 {
18                 let numberOfPathsToCurrentDigit = currentPathsStats[currentDigit]
19                 for nextDigit in navigationMap[currentDigit]! {
20                     newStats[nextDigit] = newStats[nextDigit] + numberOfPathsToCurrentDigit
21                     if newStats[nextDigit] >= 1000000007 {
22                 
23                         newStats[nextDigit] = newStats[nextDigit] - 1000000007
24                     }
25                 }
26             }
27             currentPathsStats = newStats
28         }
29         
30         var result = 0
31         for i in 0...9 {
32             result = result + currentPathsStats[i]
33             if result >= 1000000007 {
34                 
35                         result = result - 1000000007
36             }
37         }
38         
39         // if N == 1 {
40         //     result = result + 1
41         // }
42         
43         return result
44     }
45 }

1532ms

 1 class Solution {
 2     func knightDialer(_ N: Int) -> Int {
 3         var d = [[4, 6], [6, 8], [7, 9], [4, 8], [0, 3, 9], [], [0, 1, 7], [2, 6], [1, 3], [2, 4]]
 4         let mod = 1000000007
 5         var dp = [[Int]](repeating: [Int](repeating: 0, count: 10), count: N)
 6         dp[0] = [Int](repeating: 1, count: 10)
 7         guard N > 1 else {
 8             return dp[0].reduce(0, +)
 9         }
10 
11         for i in 1 ..< N {
12             for j in 0 ... 9 {
13                 let prev = d[j]
14                 for k in prev {
15                     dp[i][j] = (dp[i][j] + dp[i-1][k]) % mod
16                 }
17             }
18         }
19         var sum = 0
20         for i in 0 ... 9 {
21             sum = (sum + dp[N-1][i]) % mod
22         }
23         return sum
24     }
25 }

2196ms

 1 class Solution {
 2     let modulo:Int = 1000000007 
 3     let availableNumbers: [Int:Set<Int>] = [
 4         0 : [4, 6],
 5         1 : [6, 8],
 6         2 : [7, 9],
 7         3 : [4, 8],
 8         4 : [0, 3, 9],
 9         5 : [],
10         6 : [0, 1, 7],
11         7 : [2, 6],
12         8 : [1, 3],
13         9 : [2, 4]
14     ]
15     
16     var moves:[Int:[Int:Int]] = [
17         0:[0:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1],
18         1:[0:2, 1:2, 2:2, 3:2, 4:3, 5:0, 6:3, 7:2, 8:2, 9:2],
19         2:[0:6, 1:5, 2:4, 3:5, 4:6, 5:0, 6:6, 7:5, 8:4, 9:5]
20     ]
21     func knightDialer(_ N: Int) -> Int {
22         let dict = subDictFor(N-1)
23         var result = 0
24         for (_, value) in dict {
25             result += value
26             result %= modulo
27         }
28         return result
29     }
30     
31     func subDictFor(_ movesCount: Int) -> [Int: Int] {
32         if let result = moves[movesCount] {
33             return result
34         }
35         
36         let prevMoves = subDictFor(movesCount - 1)
37         var curMoves:[Int:Int] = [:]
38         for i in 0...9 {
39             var sum = 0
40             let nextSteps = availableNumbers[i]!
41             for nextStep in nextSteps {
42                 sum += prevMoves[nextStep]!
43             }
44             sum %= modulo
45             curMoves[i] = sum
46         }
47         moves[movesCount] = curMoves
48         return curMoves
49     }
50 }

2476ms

 1 class Solution {
 2     func knightDialer(_ N: Int) -> Int {
 3         var map: [Int64: Int64] = [0:1,1:1,2:1,3:1,4:1,6:1,7:1,8:1,9:1]
 4         var sum: Int = 10
 5         for n in (1..<N) {
 6             let t = countLayer(map)
 7             sum = t.0
 8             map = t.1
 9             //print(t)
10         }
11         
12         return sum
13     }
14     
15     func countLayer(_ map: [Int64: Int64]) -> (Int, [Int64: Int64]) {
16         var sum: Int64 = 0
17         var nextMap: [Int64: Int64] = [:]
18         for (key, value) in map {
19             var value = value % 1000000007
20             switch key {
21                 case 0: sum += (Int64)(2 * value); 
22                 nextMap[6] = (nextMap[6] ?? 0) + value; 
23                 nextMap[4] = (nextMap[4] ?? 0) + value; 
24                 break; 
25                 case 1: sum += (Int64)(2 * value); 
26                 nextMap[6] = (nextMap[6] ?? 0) + value
27                 nextMap[8] = (nextMap[8] ?? 0) + value; break; 
28                 case 2: sum += (Int64)(2 * value); 
29                 nextMap[7] = (nextMap[7] ?? 0) + value;
30                 nextMap[9] = (nextMap[9] ?? 0) + value; break; 
31                 case 3: sum += (Int64)(2 * value); 
32                 nextMap[4] = (nextMap[4] ?? 0) + value;
33                 nextMap[8] = (nextMap[8] ?? 0) + value; break; 
34                 case 4: sum += (Int64)(3 * value); 
35                 nextMap[0] = (nextMap[0] ?? 0) + value;
36                 nextMap[3] = (nextMap[3] ?? 0) + value;
37                 nextMap[9] = (nextMap[9] ?? 0) + value; break; 
38                 case 6: sum += (Int64)(3 * value); 
39                 nextMap[1] = (nextMap[1] ?? 0) + value;
40                 nextMap[7] = (nextMap[7] ?? 0) + value;
41                 nextMap[0] = (nextMap[0] ?? 0) + value; break; 
42                 case 7: sum += (Int64)(2 * value); 
43                 nextMap[2] = (nextMap[2] ?? 0) + value;
44                 nextMap[6] = (nextMap[6] ?? 0) + value; break; 
45                 case 8: sum += (Int64)(2 * value); 
46                 nextMap[1] = (nextMap[1] ?? 0) + value;
47                 nextMap[3] = (nextMap[3] ?? 0) + value; break; 
48                 case 9: sum += (Int64)(2 * value); 
49                 nextMap[4] = (nextMap[4] ?? 0) + value;
50                 nextMap[2] = (nextMap[2] ?? 0) + value; break; 
51                 default: break
52             }
53             sum = sum % 1000000007
54         }
55         return (Int(sum % 1000000007), nextMap)
56     }
57 }

 

posted @ 2018-11-04 11:39  为敢技术  阅读(432)  评论(0编辑  收藏  举报