为有牺牲多壮志,敢教日月换新天。

[Swift]LeetCode1284. 转化为全零矩阵的最少反转次数 | Minimum Number of Flips to Convert Binary Matrix to Zero Matrix

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(let_us_code)
➤博主域名:https://www.zengqiang.org
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/12151568.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

热烈欢迎,请直接点击!!!

进入博主App Store主页,下载使用各个作品!!!

注:博主将坚持每月上线一个新app!!!

Given a m x n binary matrix mat. In one step, you can choose one cell and flip it and all the four neighbours of it if they exist (Flip is changing 1 to 0 and 0 to 1). A pair of cells are called neighboors if they share one edge.

Return the minimum number of steps required to convert mat to a zero matrix or -1 if you cannot.

Binary matrix is a matrix with all cells equal to 0 or 1 only.

Zero matrix is a matrix with all cells equal to 0.

 

Example 1:


Input: mat = [[0,0],[0,1]]
Output: 3
Explanation: One possible solution is to flip (1, 0) then (0, 1) and finally (1, 1) as shown.
Example 2:

Input: mat = [[0]]
Output: 0
Explanation: Given matrix is a zero matrix. We don't need to change it.
Example 3:

Input: mat = [[1,1,1],[1,0,1],[0,0,0]]
Output: 6
Example 4:

Input: mat = [[1,0,0],[1,0,0]]
Output: -1
Explanation: Given matrix can't be a zero matrix
 

Constraints:

m == mat.length
n == mat[0].length
1 <= m <= 3
1 <= n <= 3
mat[i][j] is 0 or 1.


给你一个 m x n 的二进制矩阵 mat。

每一步,你可以选择一个单元格并将它反转(反转表示 0 变 1 ,1 变 0 )。如果存在和它相邻的单元格,那么这些相邻的单元格也会被反转。(注:相邻的两个单元格共享同一条边。)

请你返回将矩阵 mat 转化为全零矩阵的最少反转次数,如果无法转化为全零矩阵,请返回 -1 。

二进制矩阵的每一个格子要么是 0 要么是 1 。

全零矩阵是所有格子都为 0 的矩阵。

 

示例 1:

 

输入:mat = [[0,0],[0,1]]
输出:3
解释:一个可能的解是反转 (1, 0),然后 (0, 1) ,最后是 (1, 1) 。
示例 2:

输入:mat = [[0]]
输出:0
解释:给出的矩阵是全零矩阵,所以你不需要改变它。
示例 3:

输入:mat = [[1,1,1],[1,0,1],[0,0,0]]
输出:6
示例 4:

输入:mat = [[1,0,0],[1,0,0]]
输出:-1
解释:该矩阵无法转变成全零矩阵
 

提示:

m == mat.length
n == mat[0].length
1 <= m <= 3
1 <= n <= 3
mat[i][j] 是 0 或 1 。

posted @ 2020-01-05 09:49  为敢技术  阅读(299)  评论(0编辑  收藏  举报