[Swift]LeetCode1220. 统计元音字母序列的数目 | Count Vowels Permutation
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(let_us_code)
➤博主域名:https://www.zengqiang.org
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/11626363.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given an integer n
, your task is to count how many strings of length n
can be formed under the following rules:
- Each character is a lower case vowel (
'a'
,'e'
,'i'
,'o'
,'u'
) - Each vowel
'a'
may only be followed by an'e'
. - Each vowel
'e'
may only be followed by an'a'
or an'i'
. - Each vowel
'i'
may not be followed by another'i'
. - Each vowel
'o'
may only be followed by an'i'
or a'u'
. - Each vowel
'u'
may only be followed by an'a'.
Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:
Input: n = 1 Output: 5 Explanation: All possible strings are: "a", "e", "i" , "o" and "u".
Example 2:
Input: n = 2 Output: 10 Explanation: All possible strings are: "ae", "ea", "ei", "ia", "ie", "io", "iu", "oi", "ou" and "ua".
Example 3:
Input: n = 5 Output: 68
Constraints:
1 <= n <= 2 * 10^4
给你一个整数 n
,请你帮忙统计一下我们可以按下述规则形成多少个长度为 n
的字符串:
- 字符串中的每个字符都应当是小写元音字母(
'a'
,'e'
,'i'
,'o'
,'u'
) - 每个元音
'a'
后面都只能跟着'e'
- 每个元音
'e'
后面只能跟着'a'
或者是'i'
- 每个元音
'i'
后面 不能 再跟着另一个'i'
- 每个元音
'o'
后面只能跟着'i'
或者是'u'
- 每个元音
'u'
后面只能跟着'a'
由于答案可能会很大,所以请你返回 模 10^9 + 7
之后的结果。
示例 1:
输入:n = 1 输出:5 解释:所有可能的字符串分别是:"a", "e", "i" , "o" 和 "u"。
示例 2:
输入:n = 2 输出:10 解释:所有可能的字符串分别是:"ae", "ea", "ei", "ia", "ie", "io", "iu", "oi", "ou" 和 "ua"。
示例 3:
输入:n = 5 输出:68
提示:
1 <= n <= 2 * 10^4
Runtime: 100 ms
Memory Usage: 21.2 MB
1 class Solution { 2 func countVowelPermutation(_ n: Int) -> Int { 3 var dp:[[Int]] = [[Int]](repeating: [Int](repeating: 0, count: 5), count: n + 1) 4 let MOD:Int = 1000000007 5 for i in 0..<5 6 { 7 dp[1][i] = 1 8 } 9 for i in 1..<n 10 { 11 dp[i+1][0] = (dp[i][1] + dp[i][2] + dp[i][4]) % MOD 12 dp[i+1][1] = (dp[i][0] + dp[i][2]) % MOD 13 dp[i+1][2] = (dp[i][1] + dp[i][3]) % MOD 14 dp[i+1][3] = dp[i][2] 15 dp[i+1][4] = (dp[i][2] + dp[i][3]) % MOD 16 } 17 var res:Int = 0 18 for i in 0..<5 19 { 20 res = (res + dp[n][i]) % MOD 21 } 22 return res 23 } 24 }