[Swift]LeetCode1094. 拼车 | Car Pooling
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/11032164.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
You are driving a vehicle that has capacity
empty seats initially available for passengers. The vehicle onlydrives east (ie. it cannot turn around and drive west.)
Given a list of trips
, trip[i] = [num_passengers, start_location, end_location]
contains information about the i
-th trip: the number of passengers that must be picked up, and the locations to pick them up and drop them off. The locations are given as the number of kilometers due east from your vehicle's initial location.
Return true
if and only if it is possible to pick up and drop off all passengers for all the given trips.
Example 1:
Input: trips = [[2,1,5],[3,3,7]], capacity = 4
Output: false
Example 2:
Input: trips = [[2,1,5],[3,3,7]], capacity = 5
Output: true
Example 3:
Input: trips = [[2,1,5],[3,5,7]], capacity = 3
Output: true
Example 4:
Input: trips = [[3,2,7],[3,7,9],[8,3,9]], capacity = 11
Output: true
Constraints:
trips.length <= 1000
trips[i].length == 3
1 <= trips[i][0] <= 100
0 <= trips[i][1] < trips[i][2] <= 1000
1 <= capacity <= 100000
假设你是一位顺风车司机,车上最初有 capacity
个空座位可以用来载客。由于道路的限制,车 只能 向一个方向行驶(也就是说,不允许掉头或改变方向,你可以将其想象为一个向量)。
这儿有一份行程计划表 trips[][]
,其中 trips[i] = [num_passengers, start_location, end_location]
包含了你的第 i
次行程信息:
- 必须接送的乘客数量;
- 乘客的上车地点;
- 以及乘客的下车地点。
这些给出的地点位置是从你的 初始 出发位置向前行驶到这些地点所需的距离(它们一定在你的行驶方向上)。
请你根据给出的行程计划表和车子的座位数,来判断你的车是否可以顺利完成接送所用乘客的任务(当且仅当你可以在所有给定的行程中接送所有乘客时,返回 true
,否则请返回 false
)。
示例 1:
输入:trips = [[2,1,5],[3,3,7]], capacity = 4 输出:false
示例 2:
输入:trips = [[2,1,5],[3,3,7]], capacity = 5 输出:true
示例 3:
输入:trips = [[2,1,5],[3,5,7]], capacity = 3 输出:true
示例 4:
输入:trips = [[3,2,7],[3,7,9],[8,3,9]], capacity = 11 输出:true
提示:
- 你可以假设乘客会自觉遵守 “先下后上” 的良好素质
trips.length <= 1000
trips[i].length == 3
1 <= trips[i][0] <= 100
0 <= trips[i][1] < trips[i][2] <= 1000
1 <= capacity <= 100000
1 class Solution { 2 func carPooling(_ trips: [[Int]], _ capacity: Int) -> Bool { 3 var capacity = capacity 4 var stops:[Int] = [Int](repeating:0,count:1001) 5 for t in trips 6 { 7 stops[t[1]] += t[0] 8 stops[t[2]] -= t[0] 9 } 10 var i:Int = 0 11 while(capacity >= 0 && i < 1001) 12 { 13 capacity -= stops[i] 14 i += 1 15 } 16 return capacity >= 0 17 } 18 }
44ms
1 class Solution { 2 func carPooling(_ trips: [[Int]], _ capacity: Int) -> Bool { 3 var path = [Int].init(repeating: 0, count: 1001) 4 for t in trips { 5 path[t[1]] -= t[0] 6 path[t[2]] += t[0] 7 } 8 var c = capacity 9 for j in path { 10 c += j 11 if c < 0 { 12 return false 13 } 14 } 15 return true 16 } 17 }
60ms
1 class Solution { 2 func carPooling(_ trips: [[Int]], _ capacity: Int) -> Bool { 3 var road = Array(repeating: 0, count: 1000) 4 for trip in trips { 5 let count = trip[0] 6 let from = trip[1], to = trip[2] 7 for pos in from..<to { 8 road[pos] += count 9 if road[pos] > capacity { 10 return false 11 } 12 } 13 } 14 return true 15 } 16 }
68ms
1 class Solution { 2 struct Node: Comparable { 3 var addP: Int 4 var location: Int 5 init(_ addP:Int, _ location:Int) { 6 self.addP = addP 7 self.location = location 8 } 9 10 static func == (lhs:Node, rhs:Node) -> Bool { 11 return lhs.location == rhs.location 12 } 13 14 static func < (lhs:Node, rhs:Node) -> Bool { 15 if lhs.location == rhs.location { 16 return lhs.addP < rhs.addP 17 } else { 18 return lhs.location < rhs.location 19 } 20 } 21 } 22 func carPooling(_ trips: [[Int]], _ capacity: Int) -> Bool { 23 var nodes = [Node]() 24 for trip in trips { 25 nodes.append(Node(trip[0], trip[1])) 26 nodes.append(Node(-trip[0], trip[2])) 27 } 28 nodes.sort() 29 // print(nodes) 30 var counter = 0 31 for node in nodes { 32 counter += node.addP 33 if counter > capacity { 34 return false 35 } 36 } 37 return true 38 } 39 }
80ms
1 class Solution { 2 func carPooling(_ trips: [[Int]], _ capacity: Int) -> Bool { 3 let finalDestination = trips.sorted{ $0[2] < $1[2]}.last![2] 4 // let finalDestination = trips.last![2] 5 var capacityArr = Array(repeating: 0, count: finalDestination + 1) 6 7 for trip in trips { 8 for journey in trip[1]..<trip[2] { 9 capacityArr[journey] += trip[0] 10 if capacityArr[journey] > capacity { 11 return false 12 } 13 } 14 } 15 return true 16 } 17 }