[Swift]LeetCode1049.最后一块石头的重量 II | Last Stone Weight II
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/10885064.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
We have a collection of rocks, each rock has a positive integer weight.
Each turn, we choose any two rocks and smash them together. Suppose the stones have weights x
and y
with x <= y
. The result of this smash is:
- If
x == y
, both stones are totally destroyed; - If
x != y
, the stone of weightx
is totally destroyed, and the stone of weighty
has new weighty-x
.
At the end, there is at most 1 stone left. Return the smallest possible weight of this stone (the weight is 0 if there are no stones left.)
Example 1:
Input: [2,7,4,1,8,1] Output: 1 Explanation: We can combine 2 and 4 to get 2 so the array converts to [2,7,1,8,1] then, we can combine 7 and 8 to get 1 so the array converts to [2,1,1,1] then, we can combine 2 and 1 to get 1 so the array converts to [1,1,1] then, we can combine 1 and 1 to get 0 so the array converts to [1] then that's the optimal value.
Note:
1 <= stones.length <= 30
1 <= stones[i] <= 100
有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x
和 y
,且 x <= y
。那么粉碎的可能结果如下:
- 如果
x == y
,那么两块石头都会被完全粉碎; - 如果
x != y
,那么重量为x
的石头将会完全粉碎,而重量为y
的石头新重量为y-x
。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0
。
示例:
输入:[2,7,4,1,8,1] 输出:1 解释: 组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1], 组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1], 组合 2 和 1,得到 1,所以数组转化为 [1,1,1], 组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
提示:
1 <= stones.length <= 30
1 <= stones[i] <= 1000
1 class Solution { 2 let MAX:Int = 3005 3 func lastStoneWeightII(_ stones: [Int]) -> Int { 4 var possible:[Bool] = [Bool](repeating:false,count:2 * MAX + 1) 5 possible[MAX] = true 6 for stone in stones 7 { 8 var next_possible:[Bool] = [Bool](repeating:false,count:2 * MAX + 1) 9 for x in 0...2 * MAX 10 { 11 if possible[x] 12 { 13 14 next_possible[x + stone] = true 15 next_possible[x - stone] = true 16 } 17 } 18 possible = next_possible 19 } 20 for i in 0...MAX 21 { 22 if possible[MAX + i] 23 { 24 return i 25 } 26 } 27 return -1 28 } 29 }