[Swift]LeetCode1027. 最长等差数列 | Longest Arithmetic Sequence
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10704802.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given an array A
of integers, return the length of the longest arithmetic subsequence in A
.
Recall that a subsequence of A
is a list A[i_1], A[i_2], ..., A[i_k]
with 0 <= i_1 < i_2 < ... < i_k <= A.length - 1
, and that a sequence B
is arithmetic if B[i+1] - B[i]
are all the same value (for 0 <= i < B.length - 1
).
Example 1:
Input: [3,6,9,12]
Output: 4
Explanation:
The whole array is an arithmetic sequence with steps of length = 3.
Example 2:
Input: [9,4,7,2,10]
Output: 3
Explanation:
The longest arithmetic subsequence is [4,7,10].
Example 3:
Input: [20,1,15,3,10,5,8]
Output: 4
Explanation:
The longest arithmetic subsequence is [20,15,10,5].
Note:
2 <= A.length <= 2000
0 <= A[i] <= 10000
给定一个整数数组 A
,返回 A
中最长等差子序列的长度。
回想一下,A
的子序列是列表 A[i_1], A[i_2], ..., A[i_k]
其中 0 <= i_1 < i_2 < ... < i_k <= A.length - 1
。并且如果 B[i+1] - B[i]
( 0 <= i < B.length - 1
) 的值都相同,那么序列 B
是等差的。
示例 1:
输入:[3,6,9,12] 输出:4 解释: 整个数组是公差为 3 的等差数列。
示例 2:
输入:[9,4,7,2,10] 输出:3 解释: 最长的等差子序列是 [4,7,10]。
示例 3:
输入:[20,1,15,3,10,5,8] 输出:4 解释: 最长的等差子序列是 [20,15,10,5]。
提示:
2 <= A.length <= 2000
0 <= A[i] <= 10000
1 class Solution { 2 func longestArithSeqLength(_ A: [Int]) -> Int { 3 var n:Int = A.count 4 var map:[[Int:Int]] = [[Int:Int]](repeating:[Int:Int](),count:n) 5 var longest:Int = 1 6 for i in 1..<n 7 { 8 for j in 0..<i 9 { 10 var d:Int = A[i] - A[j] 11 var l:Int = map[j][d,default:1] + 1 12 map[i][d] = max(l, map[i][d,default:1]) 13 longest = max(longest, l) 14 } 15 } 16 return longest 17 } 18 }
2688ms
1 class Solution { 2 func longestArithSeqLength(_ A: [Int]) -> Int { 3 if A.count <= 2{ 4 return A.count 5 } 6 7 var dp = [Int:[Int:Int]]() 8 var longest = 0 9 for base in 0..<A.count{ 10 let baseVal = A[base] 11 for current in base+1..<A.count{ 12 let currentVal = A[current] 13 let diff = currentVal - baseVal 14 15 dp[current, default: [Int:Int]()][diff] = max( 16 dp[base, default: [Int:Int]()][diff, default: 1]+1, 17 dp[current, default: [Int:Int]()][diff, default: 1]) 18 19 longest = max(longest, dp[current]![diff]!) 20 } 21 } 22 23 return longest 24 } 25 }