[Swift]LeetCode900. RLE 迭代器 | RLE Iterator
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10607679.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Write an iterator that iterates through a run-length encoded sequence.
The iterator is initialized by RLEIterator(int[] A)
, where A
is a run-length encoding of some sequence. More specifically, for all even i
, A[i]
tells us the number of times that the non-negative integer value A[i+1]
is repeated in the sequence.
The iterator supports one function: next(int n)
, which exhausts the next n
elements (n >= 1
) and returns the last element exhausted in this way. If there is no element left to exhaust, next
returns -1
instead.
For example, we start with A = [3,8,0,9,2,5]
, which is a run-length encoding of the sequence [8,8,8,5,5]
. This is because the sequence can be read as "three eights, zero nines, two fives".
Example 1:
Input: ["RLEIterator","next","next","next","next"], [[[3,8,0,9,2,5]],[2],[1],[1],[2]]
Output: [null,8,8,5,-1]
Explanation:
RLEIterator is initialized with RLEIterator([3,8,0,9,2,5]).
This maps to the sequence [8,8,8,5,5].
RLEIterator.next is then called 4 times:
.next(2) exhausts 2 terms of the sequence, returning 8. The remaining sequence is now [8, 5, 5].
.next(1) exhausts 1 term of the sequence, returning 8. The remaining sequence is now [5, 5].
.next(1) exhausts 1 term of the sequence, returning 5. The remaining sequence is now [5].
.next(2) exhausts 2 terms, returning -1. This is because the first term exhausted was 5,
but the second term did not exist. Since the last term exhausted does not exist, we return -1.
Note:
0 <= A.length <= 1000
A.length
is an even integer.0 <= A[i] <= 10^9
- There are at most
1000
calls toRLEIterator.next(int n)
per test case. - Each call to
RLEIterator.next(int n)
will have1 <= n <= 10^9
.
编写一个遍历游程编码序列的迭代器。
迭代器由 RLEIterator(int[] A)
初始化,其中 A
是某个序列的游程编码。更具体地,对于所有偶数 i
,A[i]
告诉我们在序列中重复非负整数值 A[i + 1]
的次数。
迭代器支持一个函数:next(int n)
,它耗尽接下来的 n
个元素(n >= 1
)并返回以这种方式耗去的最后一个元素。如果没有剩余的元素可供耗尽,则 next
返回 -1
。
例如,我们以 A = [3,8,0,9,2,5]
开始,这是序列 [8,8,8,5,5]
的游程编码。这是因为该序列可以读作 “三个八,零个九,两个五”。
示例:
输入:["RLEIterator","next","next","next","next"], [[[3,8,0,9,2,5]],[2],[1],[1],[2]] 输出:[null,8,8,5,-1] 解释: RLEIterator 由 RLEIterator([3,8,0,9,2,5]) 初始化。 这映射到序列 [8,8,8,5,5]。 然后调用 RLEIterator.next 4次。 .next(2) 耗去序列的 2 个项,返回 8。现在剩下的序列是 [8, 5, 5]。 .next(1) 耗去序列的 1 个项,返回 8。现在剩下的序列是 [5, 5]。 .next(1) 耗去序列的 1 个项,返回 5。现在剩下的序列是 [5]。 .next(2) 耗去序列的 2 个项,返回 -1。 这是由于第一个被耗去的项是 5, 但第二个项并不存在。由于最后一个要耗去的项不存在,我们返回 -1。
提示:
0 <= A.length <= 1000
A.length
是偶数。0 <= A[i] <= 10^9
- 每个测试用例最多调用
1000
次RLEIterator.next(int n)
。 - 每次调用
RLEIterator.next(int n)
都有1 <= n <= 10^9
。
1 class RLEIterator { 2 var index:Int 3 var A:[Int] 4 5 init(_ A: [Int]) { 6 self.A = A 7 index = 0 8 } 9 10 func next(_ n: Int) -> Int { 11 var n = n 12 while(index < A.count && n > A[index]) 13 { 14 n -= A[index] 15 index += 2 16 } 17 if index >= A.count 18 { 19 return -1 20 } 21 A[index] -= n; 22 return A[index + 1] 23 } 24 } 25 26 /** 27 * Your RLEIterator object will be instantiated and called as such: 28 * let obj = RLEIterator(A) 29 * let ret_1: Int = obj.next(n) 30 */ 31
24ms
1 class RLEIterator { 2 let array : [Int] 3 var currentPosition = 0 4 var currentCount = 0 5 6 init(_ A: [Int]) { 7 array = A 8 } 9 10 func next(_ n: Int) -> Int { 11 var n = n 12 13 while currentPosition < array.count { 14 if currentCount + n > array[currentPosition] { 15 n = n - (array[currentPosition] - currentCount) 16 currentCount = 0 17 currentPosition += 2 18 } else { 19 currentCount += n 20 return array[currentPosition + 1] 21 } 22 } 23 return -1 24 } 25 }
32ms
1 class RLEIterator { 2 3 init(_ A: [Int]) { 4 var i = A.count - 2 5 while i >= 0 { 6 store.append(Record(A[i + 1], A[i])) 7 i -= 2 8 } 9 } 10 11 func next(_ n: Int) -> Int { 12 var n = n 13 while !store.isEmpty { 14 let k = min(store.last!.cnt, n) 15 store[store.count - 1].cnt -= k 16 n -= k 17 if n == 0 { 18 return store.last!.val 19 } 20 if store.last!.cnt == 0 { 21 store.removeLast() 22 } 23 } 24 return -1 25 } 26 27 struct Record { 28 var val: Int 29 var cnt: Int 30 init(_ val: Int, _ cnt: Int) { 31 self.val = val 32 self.cnt = cnt 33 } 34 } 35 var store = [Record]() 36 }
40ms
1 class RLEIterator { 2 private let arr: [Int] 3 var cur = (0, 0) 4 5 init(_ A: [Int]) { 6 arr = A 7 cur = (0, A[0]) 8 } 9 10 func next(_ n: Int) -> Int { 11 // diff = 2 | 1 | 1 | 2 12 var diff = n 13 // cur == (0, 3) | (0, 1) | (0,0) | (4,1) 14 // 3 - 2 < 0 => false, | 1 - 1 < 0 => false | 0-1 < 0 => true;0-1<0=>true;2-1<0=>false | 1 - 2 < 0 => true 15 while (cur.1 - diff) < 0 { 16 //||1;1| 1 17 diff -= cur.1 18 // || (2, 0);(4,0)|(6,1) 19 cur.0 += 2 20 if cur.0 >= arr.count { 21 return -1 22 } 23 // || (2, 0);(4,2)|(6) 24 cur.1 = arr[cur.0] 25 } 26 // (0,3) -> (0,1) | (0, 1) -> (0, 0) | (4,2) -> (4,1) 27 cur.1 -= diff 28 // false 29 if cur.0+1 >= arr.count { 30 return -1 31 } 32 // 8 | 8 | 5 33 return arr[cur.0+1] 34 } 35 }