[Swift]LeetCode891. 子序列宽度之和 | Sum of Subsequence Widths
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10605273.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given an array of integers A
, consider all non-empty subsequences of A
.
For any sequence S, let the width of S be the difference between the maximum and minimum element of S.
Return the sum of the widths of all subsequences of A.
As the answer may be very large, return the answer modulo 10^9 + 7.
Example 1:
Input: [2,1,3]
Output: 6
Explanation:
Subsequences are [1], [2], [3], [2,1], [2,3], [1,3], [2,1,3].
The corresponding widths are 0, 0, 0, 1, 1, 2, 2.
The sum of these widths is 6.
Note:
1 <= A.length <= 20000
1 <= A[i] <= 20000
给定一个整数数组 A
,考虑 A
的所有非空子序列。
对于任意序列 S ,设 S 的宽度是 S 的最大元素和最小元素的差。
返回 A 的所有子序列的宽度之和。
由于答案可能非常大,请返回答案模 10^9+7。
示例:
输入:[2,1,3] 输出:6 解释: 子序列为 [1],[2],[3],[2,1],[2,3],[1,3],[2,1,3] 。 相应的宽度是 0,0,0,1,1,2,2 。 这些宽度之和是 6 。
提示:
1 <= A.length <= 20000
1 <= A[i] <= 20000
Runtime: 380 ms
Memory Usage: 19.3 MB
1 class Solution { 2 func sumSubseqWidths(_ A: [Int]) -> Int { 3 var A = A.sorted(by:<) 4 var c:Int = 1 5 var res:Int = 0 6 var mod:Int = Int(1e9 + 7) 7 let countA:Int = A.count 8 var i:Int = 0 9 while(i < countA) 10 { 11 res = (res + A[i] * c - A[countA - i - 1] * c) % mod 12 i += 1 13 c = (c << 1) % mod 14 } 15 return Int((res + mod) % mod) 16 } 17 }